
An Interval Join Optimized for Modern Hardware

Danila Piatov∗, Sven Helmer∗ and Anton Dignös∗
∗ Faculty of Computer Science

Free University of Bozen-Bolzano, Italy
Email: firstname.lastname@unibz.it

Abstract—We develop an algorithm for efficiently joining
relations on interval-based attributes with overlap predicates,
which, for example, are commonly found in temporal databases.
Using a new data structure and a lazy evaluation technique, we
are able to achieve impressive performance gains by optimizing
memory accesses exploiting features of modern CPU architectures.
In an experimental evaluation with real-world datasets our
algorithm is able to outperform the state-of-the-art by an order
of magnitude.

I. INTRODUCTION

Interval-based data types and the infrastructure for storing
and processing them, commonly found in temporal and spatial
databases, are spreading into other areas as well, clearly
illustrating the need for this kind of functionality. For instance,
the SQL:2011 standard now includes temporal features [1],
such as the overlaps predicate, and there is also work on
implementing interval joins on top of map-reduce frameworks
[2]. An overlap interval join, the operator we are focusing on,
can be used in many different application areas. For instance,
assume we want to analyze weather data and are looking for
overlapping periods of high temperatures and heavy rainfall [2].
Figure 1 illustrates this by matching time periods of different
weather conditions. While t1 overlaps with r1 and t2 with r3,
r2 does not find a join partner. The benefit of using intervals
for modeling data goes beyond temporal events, though. For
instance, they can be helpful in managing uncertain data in
which attribute values are represented by ranges [3]. Last but
not least, utilizing them for filtering potential candidate objects
in multi-dimensional data by querying multiple dimensions in
the form of intervals or using space-filling curves is also an
option [4]. Here we focus on general techniques of processing
overlap joins. Nevertheless, our algorithm is also applicable in
combination with other joins. Temporal equi-join, for instance,
can be implemented by first hashing the two tables and then
running an overlap join on the corresponding partitions.

high temp.

heavy rain

t1 t2

r1 r2 r3

Fig. 1. Matching overlapping time periods

Due to the availability of larger and larger main memory
sizes, more and more data is stored in memory, in fact main
memory database systems are becoming ever more popular
[5], [6], [7]. As a consequence, the implementation of basic
operators and whole query engines in these systems has to be
adapted to the modern hardware. The gap in efficiency in the
storage hierarchy between CPU caches and main memory has

become as important as, if not more important than, the gap
between main memory and disk. In fact, since memory access
times have not been able to keep up with the increasing speed
of CPUs, accessing memory has become a major bottleneck,
often forcing CPUs to wait for data to process. This has led
to the development of cache-conscious and cache-oblivious
data structures and algorithms for database systems to increase
performance, see [8], [9], [10], [11] for some examples.

By applying techniques that keep the memory latency low
to a variant of a sweep-based interval join, which has been
neglected due to performance reasons so far, we show that this
algorithm is actually able to outperform the state of the art
and maintain its good performance on a very wide range of
workloads. In particular, we make the following contributions:

• We introduce a sweep-based overlap interval join
algorithm together with a novel compact hash table
and lazy processing technique.

• We analyze our data structure and algorithm theoreti-
cally, illustrating where their main strengths lie.

• We experimentally evaluate our algorithm and demon-
strate that it outperforms the state-of-the-art partitioning
algorithm by up to a factor of six and another sweep
line algorithm by up to a factor of nine on real-world
data.

The remainder of the paper is organized as follows. We
summarize related work in Section II, followed by a formal
definition of interval joins in Section III. In Section IV we
introduce our Endpoint-Based Interval Join and in Section VI
we show how to implement it efficiently, after reviewing
the features of modern hardware architectures in Section V.
Section VII contains an analysis of the efficiency of our
algorithm, followed by an empirical evaluation in Section VIII.
We conclude with a summary and an outlook in Section IX.

II. RELATED WORK

One of the earliest publications to look at performance issues
of temporal joins is by Segev and Gunadhi [12], [13], who
compare different sort-merge and nested-loop implementations
of their event join. They refined existing algorithms by applying
an auxiliary access method called an append-only tree, assuming
that temporal data is only appended to existing relations and
never updated or deleted. Leung and Muntz [14] and Soo
et al. [15] introduced partitioning to temporal joins, showing
that it compared favorably to nested-loop and sort-merge join
algorithms.

Some of the work on spatial joins can be applied to interval
joins as well. Arge et al. [16] used a sweeping-based interval

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference1098

join algorithm as a building block for a two-dimensional spatial
rectangle join, but did not investigate it as a standalone interval
join. It was picked up again by Gao et al. [17], who give
a taxonomy of temporal join operators and provide a survey
and empirical study of a considerable number of non-index-
based temporal join algorithms, in particular variants of nested-
loop, sort-merge, and partitioning-based methods. Again, the
sort-merge variants cannot keep up with the partition-based
approaches. The studies were conducted on a simulation testbed
with fixed parameters for I/O and other costs, though, and in
terms of caching a simplified model was used, assuming a high
cache hit ratio (>90%). In particular, none of the algorithms
was modified to make use of the cache explicitly.

There are several techniques based on supporting the join
processing with index structures, such as segment trees [18],
interval trees [19], relational interval trees [20], and quadtrees
[21]. The Timeline Index [22] used in the SAP HANA research
prototype is similar to the index structure we use. However, the
HANA access method is more complex, as it is space-optimized
for transaction-time temporal databases. For our purposes the
event list structure of a Timeline Index is sufficient. The
Timeline Join algorithm implemented on top of the Timeline
Index is very similar to a naı̈ve version of our basic join
algorithm and does not optimize memory accesses.

The most recent work on interval joins, the overlap interval
partitioning (OIP) join, which we consider to be the state-
of-the-art approach, was developed by Dignös et al. [23].
The (temporal) domain is divided into equally-sized granules
and adjacent granules can be combined to form containers of
different sizes. Intervals are assigned to the smallest container
that covers them and the join algorithm then matches intervals
in overlapping containers. In an experimental evaluation this
algorithm comes out on top against sort-merge and index-based
approaches. Nevertheless, the sort-merge variant turns out to
be more efficient for very short intervals.

There is a substantial body of work on adapting hashing
and hash-join algorithms to modern hardware. A prominent
example is the radix hash-join [11], [24]. However, the focus of
our work is completely different. For a (radix) hash-join entire
relations are partitioned and then remain unchanged during the
probing phase. Consequently, the goal here is to minimize TLB
misses during the partitioning phase. In contrast, we have a
hash table that constantly changes while processing a join and
we need to minimize the costs for scanning the whole hash
table.

III. DEFINITION OF INTERVAL JOINS

Interval data appears in many application domains, but
arguably the most common is temporal data where intervals
denote time periods. Without loss of generality we use temporal
intervals and terminology from the area of temporal databases
to define our interval join. A temporal interval join is also
known by other names, such as time join (T-join) [13], [12] or
temporal Cartesian product [17].

Definition 1: An interval relation r is a relation with tuples
r = (A1, . . . , An, Ts, Te) where Ts and Te denote, respectively,
left and right endpoints of a closed interval1, and Ai, 1 ≤ i ≤

1In the following we use “left” and “start” interchangeably and also “right”
and “end”.

n are other attributes (called explicit attributes in temporal
databases).

The interval denoted by the two endpoints can be written
as [Ts, Te] or simply as T . We will use a period (.) to reference
an attribute of a particular tuple: ri.T or ri.Ts. We use closed
intervals, but our approach can be easily extended to open and
half-open intervals (as used, e.g. in SQL:2011).

Definition 2: An interval join of two interval relations r
and s is a relational join with a predicate checking that tuple
intervals overlap. More formally, r.T intersects with s.T , i.e.,
r.T ∩ s.T 6= ∅. This inequality can also be rewritten as r.Ts ≤
s.Te ∧ s.Ts ≤ r.Te.

So an interval join can be seen as a join using a conjunction
of two inequality predicates. Consequently, it is more difficult
to compute than a regular equi-join.

Example 1: Consider interval relations r and s in Figure 2.
Relation r consists of three tuples: r1.T = [1, 5], r2.T =
[1, 10], and r3.T = [7, 11]. Relation s consists of five tuples:
s1.T = [2, 2], s2.T = [3, 12], s3.T = [4, 5], s4.T = [5, 6],
s5.T = [8, 9].

1 2 3 4 5 6 7 8 9 10 11 12 t

s

r
r1 r3

r2

s1 s2
s3

s4 s5

Fig. 2. Example interval relations

The result of the interval join between the two relations
is the following list of output pairs: 〈r1, s1〉, 〈r1, s2〉, 〈r1, s3〉,
〈r1, s4〉, 〈r2, s1〉, 〈r2, s2〉, 〈r2, s3〉, 〈r2, s4〉, 〈r2, s5〉, 〈r3, s2〉,
〈r3, s5〉.

IV. ENDPOINT-BASED INTERVAL JOIN

In this section we present the basic version of our endpoint-
based interval join algorithm (EBI-Join). It is loosely based
on an internal-memory plane-sweep technique [25] and has
similarities with the interval join by Arge et al. [16]. A slightly
different version of EBI-Join is used as part of the temporal
join in HANA [22]. First, we briefly describe the index and
then go on to the actual join algorithm.

A. Endpoint Index

The idea of the endpoint index is that intervals, which can be
seen as points in a two-dimensional space, are mapped onto one-
dimensional endpoints or events. Let r be an interval relation
with tuples ri, 1 ≤ i ≤ n. A tuple ri in an endpoint index is
represented by two events of the form e = 〈timestamp, type,
tuple id〉, where timestamp is Ts or Te of the tuple, type
is either start or end and tuple id is the tuple identifier, i.e.,
the two events for a tuple ri are 〈ri.Ts, start, i〉 and 〈ri.Te,
end, i〉. For instance, for r3.T = [7, 11], the two events are
〈7, start, 3〉 and 〈11, end, 3〉, which can be seen as “at time 7
tuple 3 started” and “at time 11 tuple 3 ended”.

1099

Since events represent timestamps (and not intervals) of
tuples, we can impose a total order among events, where
the order is according to timestamp and ties are broken by
type. From our definition of closed intervals (see Def. 1) it
follows that a starting event precedes an ending event with
the same timestamp (i.e. start < end). In case of open
intervals, the ordering of types would be reversed. Endpoints
with equal timestamps and types but different tuple identifiers
are considered equal. An endpoint index for interval relation r
is the ordered list of events [e1, e2, . . . , e2n] sorted in ascending
order.

To build the endpoint index for a relation we need to sort
the endpoints of all tuples according to their total order. The
index will have twice the number of elements compared to
the tuple count in the relation (an individual element of the
index is very compact, though), which still gives us O(n) space
complexity for storing it and O(n log n) time complexity for
building.

Example 2: Consider interval relations r and s in Figure 2.
The endpoint index for relation r is [〈1, start, 1〉, 〈1, start,
2〉, 〈5, end, 1〉, 〈7, start, 3〉, 〈10, end, 2〉, 〈11, end, 3〉]. The
endpoint index for relation s is [〈2, start, 1〉, 〈2, end, 1〉, 〈3,
start, 2〉, 〈4, start, 3〉, 〈5, start, 4〉, 〈5, end, 3〉, 〈6, end, 4〉, 〈8,
start, 5〉, 〈9, end, 5〉, 〈12, end, 2〉].

B. Basic Join Algorithm

We scan the endpoint indexes of two argument relations in
an interleaved fashion, keeping track of intervals that have
started but not yet finished. Encountering a left endpoint
during the scan means that the interval of a tuple has started,
encountering a right endpoint means the interval has ended. We
call tuples that have started but not yet finished active tuples.
When a tuple from one relation starts, it is added to the set
of active tuples for that relation. When it finishes, we remove
it from the set. Active tuples are maintained by in-memory
maps (associative arrays) of tuple identifiers to tuples. When an
interval starts, it produces a Cartesian product with the active
tuples from the other relation as the output of the algorithm.
See Algorithm 1 (EBI-Join) for the pseudocode.

We prove the algorithm is correct by observing that two
tuples from two different relations can be in the sets of active
tuples at the same time if and only if they overlap. The algorithm
outputs such a pair only once—when the latter of the two
intervals is added to the corresponding active set. More formally,
EBI-Join is a sweep algorithm that traverses the timeline based
on a list of events, in our case the left and right endpoints of all
intervals. The transition procedure for each event is either an
insert operation followed by the generation of output tuples or
a remove operation. The following invariant is maintained after
processing a given event e. For each tuple r (s) in active set
activer (actives) it holds that r.Ts ≤ e and r.Te ≥ e (s.Ts ≤ e
and s.Te ≥ e), from which follows r.Ts ≤ s.Te ∧ s.Ts ≤ r.Te,
i.e., the intervals overlap.

Example 3: We show the mode of operation of EBI-Join
using the example data from Figure 2 and the endpoint indexes
from Example 2. The algorithm starts scanning the indexes,
encounters first the left endpoints of intervals r1 and r2, loads
these tuples from relation r, and adds them to activer. It then
encounters the left endpoint of s1, loads the tuple, adds it to

Algorithm 1: Endpoint-Based Interval (EBI) Join
input : Interval relations r and s, endpoint indexes er and es

output : Joined tuple pairs

1 activer ← new Map of tuple identifiers to tuples
2 actives ← new Map of tuple identifiers to tuples
3 er ← first(er)
4 es ← first(es)

5 while exists(er) and exists(es) do
6 if er < es then
7 if er.type = start then
8 r ← r[er.tuple id]
9 activer[er.tuple id]← r

10 for s ∈ actives do
11 output(r, s)
12 end
13 else
14 activer .remove(er.tuple id)
15 end
16 advance(er)
17 else
18 if es.type = start then
19 s← s[es.tuple id]
20 actives[es.tuple id]← s
21 for r ∈ activer do
22 output(r, s)
23 end
24 else
25 actives.remove(es.tuple id)
26 end
27 advance(es)
28 end
29 end

actives, and produces the Cartesian product between s1 and
the tuples in activer, namely r1 and r2. When encountering
the right endpoint of s1 next, we remove tuple s1 from actives.
Encountering the left endpoint of s2 repeats the process: add
s2 to actives and generate output tuples with the tuples in
activer. The algorithm continues until we reach the end of one
of the indexes (in our example this is the index of r), producing
the following output: 〈r1, s1〉, 〈r2, s1〉, 〈r1, s2〉, 〈r2, s2〉, 〈r1,
s3〉, 〈r2, s3〉, 〈r1, s4〉, 〈r2, s4〉, 〈r3, s2〉, 〈r2, s5〉, 〈r3, s5〉.

C. Managing the Active Tuple Set

For managing the active tuple set we need a data structure
into which we can insert key-value pairs, remove them, and
quickly enumerate (scan) one by one all the values contained
in the data structure via the operation getnext. In our case,
the keys are tuple identifiers and the values are the tuples
themselves. The data structure of choice here is a map or
associative array.

The most efficient implementation of a map optimiz-
ing the insert and remove operations is a hash table
(with O(1) time complexities for these operations). How-
ever, hash tables are not well-suited for scanning. The
std::unordered map class in the C++ Standard Template Library
and the java.util.HashMap in the Java Class Library, for
instance, scan through all the buckets of a hash table, making
the performance of a scan operation linear with respect to the
capacity of the hash table and not to the actual amount of
elements in it.

1100

In order to achieve an O(1) complexity for getnext, the
elements in the hash table can be connected via a doubly-
linked list (see Figure 3). The hash table stores pointers to
elements, which in turn contain a key, a value, two pointers
for the doubly-linked list (list prev and list next) and a
pointer for chaining elements of the same bucket for collision
resolution (pointer bucket next). This approach is employed in
the java.util.LinkedHashMap in the Java Class Library.

Key Next
Bucket

Prev
List

Next
List

5

9

2

7

Hash table Head
List

Value

Tuple 5

Tuple 7

Tuple 9

Tuple 2

Fig. 3. Linked hash map

While this data structure offers a constant complexity for
getnext, the execution times of different calls of getnext
can vary widely in practice, depending on the memory footprint
of the map. After a series of insertions and deletions the
elements of the linked list become randomly scattered in
memory, which results in slow random memory accesses for
retrieving list elements. However, for our approach it is crucial
that getnext can be executed very efficiently, as it is typically
called much more often than insert and remove.

D. Parallel Execution

The EBI-Join can also be easily parallelized. Both input
relations r and s are virtually divided into a number of equally-
sized partitions. First, the tuples of a relation are sorted by their
starting time and then assigned to the partitions in a round-robin
fashion, i.e., the i-th tuple is assigned to partition (i mod k),
where k is the number of partitions. A separate endpoint index
is then built for each partition. This method keeps the size
of the active tuple sets small, as close neighbors are assigned
to different partitions. This is very important, because the
cardinality of active tuple sets has a major impact on the run
time of the algorithm (see Section VII-B4). Second, we do
pairwise joins between all partitions of r with all partitions of
s. Since the partitions of a relation are disjoint, we can run
all these joins independently of each other and we also do not
need a merging step in the end. In this way, we can make good
use of multiple CPU cores in a system.

V. FEATURES OF MODERN HARDWARE

In the following we briefly review mechanisms employed
by modern hardware to decrease main memory latency. This
latency can have a huge impact, as fetching data from main
memory may easily use up more than a hundred CPU cycles.

A. Mechanisms

Usually, there is a hierarchy of caches, with smaller, faster
ones closer to CPU registers. Cache memory has a far lower
latency than main memory, so a CPU first checks whether the
requested data is already in one of the caches (starting with
the L1 cache, working down the hierarchy). Not finding data
in a cache is called a cache miss and only in the case of cache
misses on all levels, main memory is accessed. In practice an
algorithm with a small memory footprint runs much quicker,
because in the ideal case, when an algorithm’s data (and code)
fits into the cache, the main memory only has to be accessed
once at the very beginning, loading the data (and code) into
the cache.

Besides the size of a memory footprint, the access pattern
also plays a crucial role, as modern hardware contains prefetch-
ers that speculate on which blocks of memory will be needed
next and preemptively load them into the cache. The easier
the access pattern can be recognized by a prefetcher, the more
effective it becomes. Sequential access is a pattern that can
be picked up by prefetchers very easily, while random access
effectively renders them useless.

Also, programs do not access physical memory directly, but
through a virtual memory manager, i.e., virtual addresses have
to be mapped to physical ones. Part of the mapping table is
cached in a so-called translation lookaside buffer (TLB). As
the size of the TLB is limited, a program with a high level of
locality will run faster, as all look-ups can be served by the
TLB.

Out-of-order execution (also called dynamic execution)
allows a CPU to deviate from the original order of the
instructions and run them as the data they process becomes
available. Clearly, this can only be done when the instructions
are independent of each other and can be run concurrently
without changing the program logic.

Finally, certain properties of DRAM (dynamic random
access memory) chips also influence latency. Accessing memory
using fast page or a similar mode means accessing data stored
within the same page or bank without incurring the overhead
of selecting it. This mechanism favors memory accesses with
a high level of locality.

B. Performance Numbers

We provide some numbers to give an impression of the
performance of currently used hardware. For contemporary
processors, such as “Core” and “Xeon” by Intel2, one random
memory access within the L1 data (L1d) cache (32 KB per
core) takes 4 CPU cycles. Within the L2 cache (256 KB per
core) one random memory access takes 11–12 cycles. Within
the L3 cache (3–45 MB) one random memory access takes
30–40 CPU cycles. Finally, one random physical RAM access
takes around 70–100 ns (200–300 processor cycles). It follows
that the performance gap between an L1 cache access and a
main memory access is huge: two orders of magnitude.

2We use the cache and memory latencies obtained for the Sandy
Bridge family of Intel CPUs using the SiSoftware Sandra benchmark,
http://www.sisoftware.net/?d=qa&f=ben_mem_latency.

1101

VI. IMPROVING MEMORY ACCESS

Managing the active tuple set efficiently in terms of memory
accesses is crucial for the performance of the join algorithm.
In the following we show how to improve the basic algorithm
considering the features of current hardware.

A. Optimizing Access to the Active Tuple Set

In the experimental section (Section VIII) we show that the
basic join algorithm from Section IV basically starves the CPU.
Our goals have to be to store the active tuple set as compactly
as possible and to access it sequentially, allowing the hardware
to get the data to the CPU in an efficient manner.

We store the elements of our hash map in a contiguous
memory area. For the insert operation this means that
we always append a new element at the end of the storage
area. Removing the last element from the storage area is
straightforward. If the element to be removed is not the last
in the storage area, we swap it with the last element and then
remove it. When doing so, we have to update all the references
to the swapped elements. Scanning involves stepping through
the contiguous storage area sequentially. We call our data
structure a gapless hash map (see Figure 4).

5

9

2

7

Key Prev NextHash table Tail
BucketBucket

Value

Tuple 5

Tuple 7

Tuple 9

Tuple 2

Fig. 4. Gapless hash map

The hash table stores pointers to elements, which contain
a key, a value, a pointer for chaining elements of the same
bucket when resolving collisions (pointer bucket next, solid
arrows), and a pointer bucket prev to a hash table entry or an
element (whichever holds the forward pointer to this element,
dashed arrows). The latter is used for updating the reference
to an element when changing the element position. The main
difference to the random memory access of a linked hash
map (Fig. 3) is the allocation of all elements in a contiguous
memory area, allowing for fast sequential memory access when
enumerating the values.

Example 4: Assume we want to remove tuple 7 from the
structure depicted in Figure 4. First of all, the bucket-next
pointer of the element with key 5 is set to NULL. Next, the
last element in the storage area (tuple 2) is moved to the
position of the element with key 7. Following the bucket-prev
pointer of the just moved element we find the reference to the
element in the hash table and update it. Finally, the variable
tail is decremented to point to the element with key 9.

We can go even further by separating the tuples from the
elements, storing them in a different contiguous memory area in

corresponding locations. All basic element operations (append
and move) are mirrored for the corresponding tuples. This
slightly increases the costs for insertions and removal of tuples.
However, scanning the tuples is as fast as it can become, because
we do not need to read any metadata, only tuple information.

B. Lazy Joining of the Active Tuple Set

The fastest getnext operations are those that are not
executed. We modify our algorithm to boost its performance
by significantly reducing the number of getnext operations
needed to generate the output.

We illustrate our point using the example setting in Figure 2.
Assume we have just encountered the left endpoint of s1, which
means that our algorithm now scans the tuple set activer, which
contains r1 and r2. After that we scan it again and again when
encountering the left endpoints of s2, s3, and s4. However,
since no endpoints of r were encountered during that time, we
scan the same version of activer four times. We can reduce
this to one scan if we keep track of the tuples s1, s2, s3, and
s4 in a (contiguous) buffer, delaying the scan until there is
about to be a change in activer.

This is the main idea of the optimized version of our
algorithm: when there is a sequence of intervals starting in one
relation with no start or end events in the other relation, we only
execute a single scan. The pseudocode for our Lazy Endpoint-
Based Interval (LEBI) Join can be found in Algorithm 2. The
capacity c of the buffer should be chosen in such a way that
it fits into the L1d CPU cache (line 5). This will make buffer
accesses significantly faster than scanning active tuple sets.

Example 5: Assume we are at the beginning of the third
iteration of the main loop (line 6). We have already encountered
the left endpoints of r1 and r2 and the current state is the
following: activer = {r1, r2}, actives = ∅, and the events
next in line for r and s are er = 〈5, end, 1〉 and es = 〈2,
start, 1〉, respectively. The buffer was emptied at the end of
the previous iteration of the loop (line 44).

The next event that is processed is es (determined in line 7),
branching to the else clause (line 25). Lines 26–35 process
the index of s, collecting the starting intervals of s1, s2, s3,
and s4 in the buffer (as nothing happens in r). While doing
so, the algorithm also keeps actives up to date as usual. Here
the loop will execute six times, with actives = {s2, s4} and
having collected {s1, s2, s3, s4} in the buffer. Next, since the
buffer is not empty, activer is scanned once, producing the
Cartesian product of {r1, r2} with {s1, s2, s3, s4}.

VII. EFFICIENCY ANALYSIS

A. Cost Model

The total cost cr1s for joining the relations r and s (having
cardinalities nr and ns, respectively) comprises the cost cr
for processing the tuples in r, the cost cs for processing the
tuples in s, and the cost cz for generating the output tuples, so
cr1s = cr + cs + cz . Processing tuples from the input relation
r means we read two endpoint events from the index, load
the tuple from the relation, and insert it into and remove
it from the active tuple set. (the same holds for the relation s).
Therefore,

cr = nr(2 · cread + cload + cinsert + cremove).

1102

Algorithm 2: Lazy Endpoint-Based Interval (LEBI) Join
input : Interval relations r and s, endpoint indexes er and es

output : Joined tuple pairs

1 activer ← new Map of tuple identifiers to tuples
2 actives ← new Map of tuple identifiers to tuples
3 er ← first(er)
4 es ← first(es)
5 buf ← new resizable array of tuples with capacity c

6 while exists(er) and exists(es) do
7 if er < es then
8 repeat
9 if er.type = start then

10 r ← r[er.tuple id]
11 activer[er.tuple id]← r
12 buf.insert(r)
13 else
14 activer .remove(er.tuple id)
15 end
16 advance(er)
17 until not exists(er) or es < er or buf.isFull

18 if buf.isNotEmpty then
19 for s ∈ actives do
20 for r ∈ buf do
21 output(r, s)
22 end
23 end
24 end
25 else
26 repeat
27 if es.type = start then
28 s← s[es.tuple id]
29 actives[es.tuple id]← s
30 buf.insert(s)
31 else
32 actives.remove(es.tuple id)
33 end
34 advance(es)
35 until not exists(es) or er < es or buf.isFull

36 if buf.isNotEmpty then
37 for r ∈ activer do
38 for s ∈ buf do
39 output(r, s)
40 end
41 end
42 end
43 end
44 buf.clear
45 end

Here, cread represents reading an index element, which is
always sequential and therefore fast even in case of external
memory, while the cost of loading a tuple (cload) is one random
memory access. It is possible to improve this by sorting the
relation by Ts and ensuring that tuples with the same starting
time are in the same order as their endpoints in the index.
In that case the algorithm will read each relation only once
sequentially.

Generating the output tuples (in case of EBI-Join) requires
scanning active tuple sets, fetching tuples one by one using
getnext, so

cz = nz · cgetnext.

where nz is the cardinality of the output relation. Next, we

compare cinsert, cremove and cgetnext of a linked hash map to
a gapless hash map.

B. Data Structures

In our implementation we use fixed-size hash tables. We
estimate the size by either building the indexes on the fly or
by keeping statistics on them (which have to be updated from
time to time). The size of the hash table is chosen as the first
power of two greater or equal to the maximum active tuple
count (thus keeping the maximum load factor α between 0.5
and 1). The average bucket size in the case of hashing with
chaining is 1 + α, and since all our searches are successful,
the average number of comparisons we have to make when
searching for a tuple is 1 + α/2, which is between 1.25 and
1.5. Due to the changing content of the hash table, the average
number of active tuples for a relation is usually lower than
the maximum, so the actual average load factor will be even
smaller, resulting in a smaller average number of comparisons.

We express the costs in terms of random and sequential
memory accesses. One rndA (“random access”) means that
an operation accesses (for reading and/or writing) a random
location within a memory area. This can cause costly delays if
the memory area is too large to fit into the L1d CPU cache.
One seqA (“sequential access”) means that a data item is read
from or written to a memory area during a sequential scan or
accessed repeatedly within a short time frame. This operation
causes almost no delays.

1) Linked Hash Map: Inserting a tuple into an active tuple
set using a linked hash map (Fig. 3) boils down to the following:
(1) insert a new tuple at the head of the list by allocating a
new list element (1 rndA of available element stack), copying
the tuple into it (1 rndA + 1 seqA), and setting the correct
ListNext value, (2) modify the ListPrev pointer of the previous
first element (1 rndA), (3) update the directory entry (1 rndA),
and (4) adjust the list head (we assume that it stays in cache).
If we have a collision in the hash table, then in step (1) we
will also have to modify the BucketNext pointer of the newly
inserted element, placing it first in the bucket.

clinkedhashmap
insert = 4 rndA + 1 seqA.

When removing a tuple, we have to go through the following
steps: (1) look up the tuple in the directory and update the
directory (1 rndA), (2) look up and modify the ListNext pointer
of the previous element in the list (1 rndA), (3) look up and
modify the ListPrev pointer of the next element (1 rndA), and
(4) free the element (1 rndA of available element stack). (From
time to time, we also have to update the list head pointer.)
In case of a collision, we have to find the needed element in
the bucket and update the BucketNext pointer of the previous
bucket element, where each step results in a random memory
access. However, as we mentioned above, the collision rate in
our case is negligibly small.

clinkedhashmap
remove = 4 rndA.

When fetching a tuple to produce output, calling getnext will
follow the ListNext pointer of the current item. Due to elements
being randomly scattered in the memory caused by the constant
insertion and removal of items, every call of getnext costs
one random access and one sequential tuple read.

clinkedhashmap
getnext = 1 rndA + 1 seqA.

1103

2) Gapless Hash Map: When inserting a tuple into an active
tuple set using our gapless hash map (Fig. 4), we apply these
steps: (1) copy the new element into the tail of the element
storage (1 rndA + 1 seqA), (2) update the directory entry
(1 rndA), and (3) adjust the Tail pointer. In case of a collision,
we have an additional step: (4) modify the BucketPrev pointer
of the previous first element in the bucket..

cgaplesshashmap
insert = 3 rndA + 1 seqA.

When removing a tuple, we have to do the following steps:
(1) look up the tuple identifier in the directory, (2) fetch the
last entry from the hash table, (3) copy it to the position of
the tuple that is to be removed (copying costs 2 seqA), (4)
adjust the Tail pointer, and (5) update the directory entry. If the
removed tuple is part of a bucket, we have to (6) find it in the
bucket, (7) adjust the BucketPrev pointer of the next element
and (8) the BucketNext pointer of the previous element. If the
moved, last tuple is part of a bucket, we will also have to do
steps (7) and (8) for that tuple as well. Here, all steps except
(4) and (8) can result in cache misses.

cgaplesshashmap
remove = 5 rndA + 2 seqA.

Generating output tuples is done by sequentially scanning a
contiguous area of memory:

cgaplesshashmap
getnext = 1 seqA.

3) Comparison: When computing the EBI-Join, every tuple
of the input relations is inserted into and removed from the hash
map exactly once. Compared to a linked hash map, the gapless
hash map has an additional two seqA per input tuple. The
getnext function, on the other hand, is called once for each
output tuple. Here, the linked hash map is more expensive:
it needs an additional rndA. We now take a look at what
difference two seqA versus one rndA make in practice.

4) Experimental Evaluation: We filled the hash maps with
various numbers of 32-byte tuples, then randomly added and
removed tuples to simulate the management of an active tuple
set. We can execute a sequential access in at most 3–4 ns,
which means that the difference between the linked and the
gapless hash map is a few nanoseconds for the two seqA.

The differences for the single rndA can be huge, though.
Figure 5, shows the average latency of a getnext operation
depending on the size of the map (note the logarithmic scale).

102 103 104 105 106 107 108

1

10

100

Map size, tuples

L
at

en
cy

of
g
e
t
n
e
x
t

,n
s Linked hash map

Gapless hash map

Fig. 5. Latency of getnext operation

We see that the latency of a getnext operation is not
constant but grows depending on the memory footprint of
the tuples. In order to find the cause of this, we used the

Performance Application Programming Interface (PAPI) library
to read out the CPU performance counters [26]. When looking
at the average number of stalled CPU cycles (PAPI-RES-STL)
per getnext operation, we get a very similar picture (see
Figure 6). Therefore, the latency is obviously caused by the
CPU memory subsystem.

102 103 104 105 106 107 108

1

10

100

Map size, tuples

St
al

le
d

cy
cl

es

Linked hash map
Gapless hash map

Fig. 6. Stalled CPU cycles per getnext operation

In Figure 5 we can clearly identify three distinct transitions.
When we have a small number of tuples, all of them fit into
the L1d CPU cache (32 KB) and we have a low latency. As the
tuple count grows towards 1000 tuples, we start using the L2
cache (256 KB), which has a greater latency. When we increase
the number of tuples further and start reaching 10,000 tuples,
the data is mostly held in the L3 cache (20 MB in our case)
and, finally, after arriving at a tuple count of around 600 000,
the tuples are mostly located in RAM. We make a couple of
important observations. First, due to the more compact storage
scheme of the gapless hash map, the transitions set in later.
Second, the improvement gains of the gapless hash map are
considerable and can be measured in orders of magnitude
(note the logarithmic scale). Third, the latency of a getnext
operation for the gapless hash map plateaus at around 2.7 ns,
while the latency for the linked hash map reaches 100 ns.

Cache misses alone do not explain all the latency. Figure 7
shows the average number of cache misses for the L1d (PAPI-
L1-DCM), the L2 (PAPI-L2-TCM), and the L3 cache (PAPI-L3-
TCM). While in general the average number of cache misses
per getnext operation is lower for the gapless hash map, the
factor between the two hash maps in terms of stalled CPU cycles
is disproportionately higher (please note the double-logarithmic
scale in Figure 6). Also, the cache misses do not explain the
left-most part of Figure 6, in which there are no cache misses at
all. The additional performance boost stems from out-of-order
execution. Examining the different (slightly simplified) versions
of the machine code generated for getnext makes this clear.
For the gapless hash map, the code looks like this:

loop:
add rax, [rdx]
add rdx, 32 ;increment pointer
cmp rcx, rdx
jne loop

while for the linked hash map we have the following picture:

loop:
add rax, [rdx]
mov rdx, [rdx + 32] ;dereference pointer
cmp rcx, rdx
jne loop

1104

102 103 104 105 106 107 108

0

0.5

1

1.5

Map size, tuples

L
1d

ca
ch

e
m

is
se

s Linked hash map
Gapless hash map

102 103 104 105 106 107 108

0

0.5

1

Map size, tuples

L
2

ca
ch

e
m

is
se

s

Linked hash map
Gapless hash map

102 103 104 105 106 107 108

0

0.5

1

Map size, tuples

L
3

ca
ch

e
m

is
se

s

Linked hash map
Gapless hash map

Fig. 7. Cache misses per getnext operation

When scanning through a gapless hash map, we add a constant
to the pointer, which means that the individual instructions are
basically independent of each other. Consequently, the CPU is
able to predict the instructions that will be executed next and
can already start preparing them out-of-order (i.e., issue cache
misses up front for the referenced data) while some of the
instructions are still waiting for data from the L1 cache. For
the linked hash map the CPU has to wait until the pointer to the
next item has been dereferenced. In summary, multiple parallel
cache misses in a sequential access pattern are processed much
faster than isolated requests to random memory locations.

We made a few further observations: there were no L1
instruction (L1i) cache misses, neither for the gapless nor for
the linked hash map. The increase of L1d cache misses for the
linked hash map for large numbers of tuples is caused by TLB
cache misses. We got very similar results for different CPUs on
different machines (the diagrams shown here are for an Intel
Xeon E5-2667 v3 processor), which led us to the conclusion
that the techniques we employ will generally improve the
performance on CPU architectures with a cache hierarchy,
prefetching, and out-of-order execution. For the remainder of
the paper we only consider the gapless hash map.

VIII. EMPIRICAL EVALUATION

In this section we provide the results of an empirical study of
EBI-Join and LEBI-Join, comparing them with Arge’s interval
join and overlap interval partition join.

A. Environment

All algorithms were implemented in C++11 by the same
author and were compiled with GCC 4.9.2 using -O3 and
-march=native optimizations flags to native 64-bit binaries.
The execution was performed on a machine with two Intel Xeon
E5-2667 v3 processors3 under Linux. All experiments used 32-
byte tuples containing two 64-bit timestamp attributes (Ts and
Te). The experiments were also repeated on a six-year-old Intel
Xeon X5550 processor and on a notebook processor i5-4258U,
showing a similar behavior.

Common optimizations used in all implementations include:
variable (including tuple fields) alignment in memory; using
preallocated array-based pools for structure allocation and
deallocation (e.g. for linked list elements) instead of using
dynamic memory routines, not using virtual function calls,

3Launched in Q3’14, 8 cores, clock speed 3.2 GHz, max turbo frequency
3.6 GHz, 32 KB per-core L1d cache, 256 KB per-core L2 cache, 20 MB
shared L3 cache

using templates and function inlining (including sorting using
a std::sort function template with comparison functions
inlined into the sorting routine), and loop unrolling. Tuples
were implemented as structures, relations were implemented as
arrays of tuples. We used the gapless hash map with a separated
tuple storage area. The workload consisted of accumulating
the sum of XOR operations between the Ts attributes of the
joined tuples.

B. Competitors

1) Arge’s Interval Join: Arge’s interval join [16] was
originally created as a building block for a spatial rectangle
intersection join and is based on in-memory plane-sweeping,
making it similar to our EBI-Join. We include it in our study,
as to the best of our knowledge it has never been considered
in any empirical evaluation of interval joins.

Instead of traversing an endpoint index, it directly scans
the interval relations, which have to be sorted on Ts. When
a new tuple is encountered, it is placed in a list of active
tuples for the scanned relation and we generate output tuples
by combining it with the active tuples of the other relation.
Outdated tuples are detected and removed during scanning.
Consequently, the active tuple lists have to support insertion,
scanning, and removal during scanning (by reference). The
straightforward implementation of such a data structure is by
means of a singly linked list. Due to the random nature of
memory accesses during scanning, this structure suffers from
the same performance degradation as a linked hash map, though.
We improve the implementation by using a gapless list, allowing
us to access elements sequentially and to remove elements from
the middle of the list.

Similarly to the gapless hash map, elements of a gapless
list are stored in a contiguous memory area. New elements are
appended to the end of the list. When an element is removed
from the middle, the last element is moved to its place. For the
experiments we only include the implementation of the gapless
list, since it always outperformed the linked list.

2) Overlap Interval Partition Join: Currently, the overlap
interval partition join or OIPJoin by Dignös et al. [23] is
considered to be the state-of-the-art approach for interval joins.
The algorithm consists of two parts—partitioning and joining.

The partitioning works as follows: first, we choose a number
k (more on this later). The smallest interval covering all the
intervals in a relation, called the domain, is split into k equally-
sized granules. Partitions are formed by combining an arbitrary
number of adjacent granules, e.g. granule 1, granules 2 and 3,
granules 4 to 10 are all valid partitions. Tuples are assigned to

1105

the smallest partition that covers their interval. The algorithm
for building the partitions sorts the tuples in a relation by
the indexes of the granule that contains the endpoints of their
intervals and is then able to create the partitions with one scan
over a relation. Note that only non-empty partitions are actually
stored.

The join itself is pretty much a standard partitioning join.
For each partition of the outer relation, we execute the join
by combining it with the overlapping partitions of the inner
relation in a block-nested-loop fashion.4 During this step we
have to check whether two intervals actually overlap.

The trickiest part of the algorithm is to choose the correct
number of granules k. If k is too small (resulting in a few,
large partitions), the nested-loop join combining two partitions
does a lot of extra work, because chances are high that many
of the intervals in the partitions do not overlap. If k is too large
(resulting in a lot of small partitions), the random I/O costs
for accessing all these partitions increase. The authors of [23]
present a cost model considering statistical properties of the
relations, block size, and a CPU/IO cost ratio and based on
this develop an algorithm for optimizing k. We implemented
and tuned the OIPJoin algorithm specifically for the machine
we ran the experiments on.

C. Test Workloads

We tested the algorithms using synthetic and real-world
datasets that are described below.

1) Synthetic Datasets: To show particular performance
effects of the algorithms we create synthetic datasets with
Zipf-distributed [27] starting points of the intervals in the
range of [1, 106]. The duration of the intervals is exponentially
distributed with rate parameter λ, which determines the average
duration 1/λ of the intervals. To perform a join, both relations
in an individual workload follow the same distribution, but are
generated independently with a different seed. We denote a
workload zi as the join between two relation each with 107

tuples and λ = 2 · 10−i. We generated seven such workloads,
from the lightest z0 (∼5.4 tuples on average are active in every
relation, ∼1.07 ·108 result tuples) to the heaviest z6 (∼0.3 ·107
active tuples on average, ∼0.6 · 1014 result tuples).

2) Real-world Datasets: We use four real-world datasets
that differ in size and data distribution. The main properties
of these datasets are summarized in Table I. The Incumbent
(“inc”) dataset [28] records the history of employees assigned
to projects over a 16 year period at a granularity of days. The
Feed (“feed”) dataset records the history of measured nutritive
values of feeds over a 24 year period at a granularity of days;
a measurement remains valid until a new measurement for the
same nutritive value and feed becomes available. The Webkit
(“web”) dataset [29] records the history of files of the SVN
repository of the Webkit project over a 11 year period at a
granularity of milliseconds. The valid times indicate the periods
in which a file did not change. The Flight (“flight”) dataset [30]
is a collection of international flights for November 2014, start
and end of the intervals represent plane departure and arrival
times with minute precision. For the experiments we used
self-joins of these datasets.

4The block-nested-loop is actually an improvement we added, our version
of OIPJoin is running faster than the original one.

TABLE I. PROPERTIES OF REAL-WORLD DATASETS

“inc” “feed” “web” “flight”
Cardinality 83,852 3,697,957 1,213,476 57,585
Distinct points 2689 5584 110,165 10,552
Time range 5895 8610 ∼239 13,543
Min. duration 1 1 ∼210 25
Max. duration 574 8589 ∼239 915
Avg. duration 184 432 ∼234 148

D. Experiments and Results

First, we illustrate the performance gained by using LEBI-
Join rather than EBI-Join. Second, LEBI-Join is compared to
state-of-the-art algorithms. In the following the measurements
include the time for sorting relations (for Arge’s and EBI/LEBI-
Join), for building endpoint indexes (for EBI/LEBI-Join), and
for partitioning the data (for OIPJoin).

1) EBI-Join vs LEBI-Join: The basic EBI-Join algorithm
scans activer ns times and actives nr times. However, LEBI-
Join reduces these numbers considerably. As long as we only
encounter starting tuples in r and no events in s, we can delay
the scanning of actives (and vice-versa).

Analyzing the Data: We now take a look at how long
such uninterrupted sequences of starting events are. Figure 8
shows this data for the table “Incumbent” from the real-world
datasets when joining it with itself. On the x-axis we have the
length of uninterrupted sequences of starting events and on the
y-axis their relative frequency of appearance. In 60% of the
cases we have sequences of length ten or more, meaning that
our LEBI-Join can avoid a considerable number of scans on
active tuple sets.

We found that starting events of intervals are not uniformly
distributed in real-world datasets, but tend to cluster around
certain time points. This can be recognized by looking at the
number of distinct points in Table I. For example, for the
“Incumbent” dataset, employees are usually not assigned to new
projects on random days, the assignments tend to happen at the
beginning of a week or month. For the “Feed” dataset, multiple
measurements (which are valid until the next one is made)
are taken in the course of a day, resulting in a whole batch
of intervals starting at the same time. The clustering is not
just due to the relatively coarse granularity (one day) of these
two datasets. The “Webkit” repository dataset, which looks
at intervals in which files are not modified, has a granularity
measured in milliseconds. Still we observe a clustering of
starting events: a commit usually affects and modifies several
files. The “Flight” dataset, which has granularity of minutes,
also exhibits a similar pattern in the form of batched departure
times.

1 2 3 4 5 6 7 8 9 10+
0%

20%

40%

60%

80%

100%

1
1

%

6
.4

%

5
.3

%

4
.4

%

3
.8

%

2
.6

%

2
.4

%

2
.3

%

1
.6

%

6
0

%

Uninterrupted endpoint sequence length

R
el

at
iv

e
fr

eq
ue

nc
y

Fig. 8. Distribution of uninterrupted sequence lengths for self-join of the
“inc” dataset

1106

Reduction Factor: The real performance implication is
that LEBI-Join executes fewer getnext operations than EBI-
Join in such a scenario. The actual reduction depends not only
on the clusteredness of the starting events, but also on the size
of the corresponding active tuple set and the buffer capacity of
LEBI-Join. We define a getnext operation reduction factor
(GNORF), changing the cost cz for the LEBI-Join to

cz =
nz · cgetnext
GNORF rs

.

For the self-join of the “Incumbent” dataset and for buffer
capacity of 32 the GNORF is equal to 23.6, which corresponds
to huge savings in terms of run time. We also calculated
this statistic for self-joins of other real-world datasets (“feed”:
31.2, “web”: 9.73, “flight”: 7.14). Even for self-joins we get
a considerable reduction factor: when encountering multiple
starting events with the same timestamp, we first deal with all
those of one relation and then with those of the other relation.

Join Performance: Next we compare EBI-Join with
LEBI-Join, investigating the relative performance of an actual
join operation (see Figure 9). LEBI-Join clearly outperforms
EBI-Join, achieving a relative speedup of up to nine.

z0 z1 z2 z3 z4 z5 z6

1

2

3

4

5

6

7

8

9

10

Workload

Sp
ee

du
p

re
la

tiv
e

to
E

B
I,

tim
es

LEBI-Join, gapless
EBI-Join, gapless

Fig. 9. EBI-Join vs LEBI-Join, synthetic data

For real-world datasets the differences can also be drastic.
Figure 10 depicts the results for the “Incumbent” (inc), “Webkit”
(web), “Feed” (feed), and “flight” datasets, showing that LEBI-
Join outperforms EBI-Join by up to a factor of eight. Therefore,
we drop EBI-Join from the diagrams from here on.

in
c

0.91
0.14

LEBI-Join, gapless EBI-Join, gapless

w
eb

268
50

fe
ed

1,039
120

0

fli
gh

t

0.029
0.016

Joining time, s (linear scale)

Fig. 10. EBI-Join vs LEBI-Join, real-world data

2) Comparison to the State-of-the-art: First, we present the
results for the synthetic datasets (see Figure 11). For small
interval durations (left-hand side of the figure) we have a
small number of result tuples and preprocessing such as sorting

z0 z1 z2 z3 z4 z5 z6
100

101

102

103

104

105

Workload

Jo
in

in
g

tim
e,

s

LEBI-Join, gapless
Arge’s, gapless
OIPJoin

Fig. 11. Algorithm comparison, synthetic data

and indexing severely outweighs the time needed for the join
itself. For such cases Arge’s interval join performs very well,
since it only needs to do a simple sort on the base relations.
The performance of Arge’s interval join quickly decreases for
datasets with a higher number of active tuples. Even though we
implemented it using a gapless list for storing the active tuples,
it still has to scan the active tuples for each input tuple. LEBI-
Join, on the other hand, benefits from lazy joining. OIPJoin is
only competitive for very large interval durations because for
short intervals it has to rule out many false positives and has a
large overhead for searching and accessing a large number of
small partitions.

Next, we show what happens when we vary the number
of distinct points and also explain the performance of the
algorithms in more detail. The first workload consists of an
outer relation that contains 107 tuples that have exponentially
distributed interval durations with an average of 5 · 106. The
starting endpoints were uniformly distributed within the domain
[1, 109]. The inner relation is a copy of the outer, but with all
intervals shifted by one time point to the right. This gave
us a workload with GNORF ≈ 1. We called this workload
d = 0. For the workload d = 2 we (independently) discretized
the domain of each relation into 5 · 106 granules so that on
average two tuples start (and end) at the same time point.
We continued the discretization by creating coarser granules,
thereby increasing the number d of tuples starting (and ending)
at the same time point. Table II shows the different values
for d we used, each with its corresponding reduction factor
GNORF . The size of the output is still roughly 1012.

TABLE II. DISCRETIZATION WORKLOADS

d GNORF d GNORF
0 1.012 8 8.023
2 2.315 16 16.038
4 4.084 32 21.956

Figure 12(a) shows that in terms of total run time LEBI-
Join is the only algorithm profiting from an increase of the
factor d. However, when investigating the stalled CPU cycles
per output tuple (Figure 12(b)), we are in for a surprise. While
LEBI-Join can decrease the number of stalled CPU cycles for
larger values of d (resulting in a better execution time), OIPJoin
already has a fairly small number of idle cycles, so its run time
cannot be explained by a stalled CPU. Figure 12(c) explains
this phenomenon: OIPJoin is a more complex algorithm having
to execute a larger number of instructions per output tuple (it
has to rule out false positives). LEBI-Join not only reduces

1107

LEBI-Join, gapless Arge’s, gapless OIPJoin

0 2 4 8 16 32
0

500

1 000

Discretization factor d

Jo
in

in
g

tim
e,

s

0 2 4 8 16 32
0

0.5

1

1.5

2

Discretization factor d

St
al

le
d

C
PU

cy
cl

es

0 2 4 8 16 32
0

5

10

Discretization factor d

C
om

pl
et

ed
in

st
ru

ct
io

ns

(a) Execution time (b) CPU stalls (c) Completed instructions

0 2 4 8 16 32
0

0.2

0.4

0.6

Discretization factor d

L
1d

ca
ch

e
m

is
se

s

0 2 4 8 16 32
0

0.1

0.2

0.3

0.4

Discretization factor d

L
2

ca
ch

e
m

is
se

s

0 2 4 8 16 32
0

0.000005

0.00001

0.000015

Discretization factor d

L
3

ca
ch

e
m

is
se

s

(d) L1d cache misses (e) L2 cache misses (f) L3 cache misses

Fig. 12. Discretization experiments

CPU-stalls for an increasing factor of d, it can also lower the
number of executed instructions, as it spends less and less time
scanning active tuple sets.

We also examined the average number of cache misses per
output tuple for the three algorithms (Figure 12(d), (e), and
(f)) and observed an interesting effect. While Arge’s algorithm
and LEBI-Join have some L1d and L2 cache misses, they very
rarely have to go beyond the L3 cache. OIPJoin generally has
fewer cache misses, but if there is one, it has to go all the
way to RAM to fetch the data. While OIPJoin processes data
within one partition, all accesses are very localized. When it
changes from one partition to another, though, it has to access
a completely different storage area.

in
c

0.78
1.08

0.14

LEBI-Join, gapless Arge’s, gapless OIPJoin

w
eb

157
296

50

fe
ed

591
1138

120

0

fli
gh

t

0.118
0.054

0.016

Joining time, s (linear scale)

Fig. 13. Real-world dataset self-joins

Figure 13 for the real-world datasets speaks for itself. LEBI-
Join is the clear winner and it beats the competition by up to
an order of magnitude. High GNORF values of real-world
data allows LEBI-Join to minimize the expensive scanning of
the active tuple sets.

In the above experiments we perform self-joins. In the
following experiment, we subsample one of the relations (taking
every n-th tuple) to simulate a scenario in which one of the
relations is smaller and has fewer active tuples (Fig. 14). Due to
space constraints, we only provide the results for the “Webkit”
dataset; the other datasets show a similar behavior. LEBI-Join
performs well on the whole range of workloads independently
of the size of the subsampled relation.

1 4 16 64 256 1024 4096
10−1

100

101

102

103

Inner relation subsampling factor (taking every n-th tuple)

Jo
in

in
g

tim
e,

s

LEBI-Join, gapless
Arge’s, gapless
OIP

Fig. 14. Subsampling of “Webkit” dataset

3) Parallel Execution: Finally, we analyze the parallel
execution of LEBI-Join (see Figure 15). We divide each relation
into one, two, three and four partitions and assign every pairwise
join to a task, resulting in one, four, nine, and sixteen tasks,
respectively. Our benchmark machine has two CPUs with eight
cores each and we can clearly see an improvement in run time
for parallel execution (note the logarithmic scale). The average
speedup for four, nine, and sixteen tasks is 2.5, 3.8, and 4.6,
respectively.

IX. CONCLUSIONS AND FUTURE WORK

Due to the proliferation of main memory database systems,
the development of algorithms that use CPU caches efficiently
has gained significantly in importance. Ideally, these algorithms
should not be parameterized, meaning that they adapt to
different cache sizes and environments automatically.

1108

z0 z1 z2 z3 z4 z5 z6
100

101

102

103

104

Workload

Jo
in

in
g

tim
e,

s
1 taks
4 tasks
9 tasks
16 tasks

Fig. 15. Parallel execution of LEBI-Join, synthetic data

We developed a fast and robust interval join algorithm,
LEBI-Join, that does not require tuning for specific hardware.
At the heart of the algorithm is a data structure, gapless hash
map, that manages active tuple sets during the join processing
in a cache-efficient manner. We push the optimization further
by reducing the number of scans we need to execute on active
tuple sets. We analyze our data structures and algorithms, show
where the performance gains originate, and confirm with an
experimental evaluation that LEBI-Join is able to outperform
the state-of-the-art algorithms for interval joins. In particular,
for real-world data the difference between LEBI-Join and its
competitors can reach an order of magnitude. We also show that
LEBI-Join is more universal than its competitors by performing
well for a very wide range of workloads.

For future work, we would like to improve the performance
of other operators processing temporal or interval data by
making them more cache-efficient. For example, techniques
similar to ours could be used for predicates checking whether
intervals are contained within each other. A more sophisticated
approach would be needed for computing temporal aggregates
more efficiently. Our method may even be applicable for
completely different types of data, such as XML or other
semistructured documents, for which algorithms and index
structures relying on intervals are used. Furthermore, our
algorithm is also well-suited for stream processing, as we
handle events in time order. In general, we believe that
there is still a lot of optimization potential when it comes
to implementing interval-based operators by analyzing their
behavior and adapting them to modern hardware architectures.

ACKNOWLEDGMENTS

We thank Andreas Behrend for providing the Flight dataset.

REFERENCES

[1] K. Kulkarni and J.-E. Michels, “Temporal features in SQL:2011,”
SIGMOD Rec., vol. 41, no. 3, pp. 34–43, Oct. 2012.

[2] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V. Subramaniam, and
M. K. Mohania, “Processing interval joins on map-reduce,” in EDBT,
2014, pp. 463–474.

[3] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia,
“Efficient join processing over uncertain data,” in CIKM, 2006, pp. 738–
747.

[4] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Distributed
intersection join of complex interval sequences,” in DASFAA, 2005,
pp. 748–760.

[5] S. K. Cha and C. Song, “P*TIME: Highly scalable OLTP DBMS for
managing update-intensive stream workload,” in VLDB, 2004, pp. 1033–
1044.

[6] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP & OLAP main
memory database system based on virtual memory snapshots,” in ICDE,
Hannover, Germany, 2011, pp. 195–206.

[7] A.-P. Liedes and A. Wolski, “SIREN: A memory-conserving, snapshot-
consistent checkpoint algorithm for in-memory databases,” in ICDE,
Atlanta, Georgia, 2006, p. 99.

[8] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory
wall in MonetDB,” CACM, vol. 51, no. 12, pp. 77–85, 2008.

[9] J. Cieslewicz, W. Mee, and K. A. Ross, “Cache-conscious buffering for
database operators with state,” in DaMoN, 2009, pp. 43–51.

[10] B. He and Q. Luo, “Cache-oblivious databases: Limitations and
opportunities,” ACM TODS, vol. 33, no. 2, pp. 8:1–8:42, Jun. 2008.

[11] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing main-memory
join on modern hardware,” IEEE TKDE, vol. 14, no. 4, pp. 709–730,
2002.

[12] A. Segev and H. Gunadhi, “Event-join optimization in temporal relational
databases,” in VLDB, 1989, pp. 205–215.

[13] H. Gunadhi and A. Segev, “Query processing algorithms for temporal
intersection joins,” in ICDE, 1991, pp. 336–344.

[14] T. Y. C. Leung and R. R. Muntz, “Temporal query processing and
optimization in multiprocessor database machines,” in VLDB, 1992, pp.
383–394.

[15] M. D. Soo, R. T. Snodgrass, and C. S. Jensen, “Efficient evaluation of
the valid-time natural join,” in ICDE, 1994, pp. 282–292.

[16] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Scalable
sweeping-based spatial join,” in VLDB, 1998, pp. 570–581.

[17] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “Join operations
in temporal databases,” The VLDB Journal, vol. 14, no. 1, pp. 2–29,
Mar. 2005.

[18] D. M. d. Berg, D. M. v. Kreveld, P. D. M. Overmars, and D. O. C.
Schwarzkopf, “More geometric data structures,” in Computational
Geometry. Springer Berlin Heidelberg, 2000, pp. 211–233.

[19] H. Edelsbrunner, “Dynamic rectangle intersection searching,” Technical
University of Graz, Austria, Institute for Information Processing Report
F47, 1980.

[20] J. Enderle, M. Hampel, and T. Seidl, “Joining interval data in relational
databases,” in SIGMOD, 2004, pp. 683–694.

[21] H. Samet, J. Sankaranarayanan, and M. Auerbach, “Indexing methods
for moving object databases: games and other applications,” in SIGMOD,
2013, pp. 169–180.

[22] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann,
F. Färber, and N. May, “Timeline index: A unified data structure for
processing queries on temporal data in SAP HANA,” in SIGMOD, 2013,
pp. 1173–1184.

[23] A. Dignös, M. H. Böhlen, and J. Gamper, “Overlap interval partition
join,” in SIGMOD, 2014, pp. 1459–1470.

[24] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” PVLDB, vol. 7, no. 1, pp. 85–96,
2013.

[25] F. P. Preparata and M. I. Shamos, Computational geometry: An
introduction. Springer-Verlag New York, Inc., 1985.

[26] S. Moore and J. Ralph, “User-defined events for hardware performance
monitoring,” in ICCS 2011 Workshop: Tools for Program Development
and Analysis in Computational Science, Singapore, 2011.

[27] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in SIGMOD,
1994, pp. 243–252.

[28] J. A. G. Gendrano, R. Shah, R. T. Snodgrass, and J. Yang, “University
information system (UIS) dataset,” TimeCenter CD-1, 1998.

[29] “The webkit open source project,” http://www.webkit.org, 2012.
[30] A. Behrend and G. Schüller, “A case study in optimizing continuous

queries using the magic update technique,” in SSDBM, 2014.

1109

