Advanced Data Structures

Spring Semester 2018 Exercise Set 1

Consider arbitrary associative operation \circ , and product queries of the form $x_i \circ x_{i+1} \circ \ldots \circ x_j$.

Exercise 1:

Show the "trivial" solution from lecture to the product queries in arrays problem: given array on n elements, precompute it in $\mathcal{O}(n)$ time and space to answer product queries in $\mathcal{O}(\log n)$ time.

Exercise 2:

Show a solution to Exercise 2 that works in a dynamic setting (supports assignments to any x_i in time $\mathcal{O}(\log n)$).

Exercise 3:

Consider (static) product queries on trees: every node holds a value, we query for product of all values on a path between two given vertices. Show that we can preprocess any n-vertex tree in $\mathcal{O}(n \log n)$ time and space, to support queries for path product in $\mathcal{O}(\log n)$ time.

Hint:

Store some auxiliary values regarding jumps towards the root of certain length.

Exercise 4:

Show that solution to Exercise 4 can be tweaked to have min queries on trees in $\mathcal{O}(1)$ time.

Hint:

Use the fact that min is idempotent, that is $\min(x, x) = x$.

Exercise 5: (\star)

Consider static data structure for product queries in arrays, where each query is answered accessing at most ℓ cells with preprocessed data. Show, that input can be preprocessed in time: $\mathcal{O}(n^2)$, $\mathcal{O}(n \log n)$, $\mathcal{O}(n \log \log n)$ and $\mathcal{O}(n \log^* n)$ for $\ell = 1, 2, 3$ and 4 respectively.

Hint:

For $\ell=2$, you only need to "massage" previous solutions to have 2 memory cells accessed, instead of $\mathcal{O}(1)$. For $\ell>2$, it is enough to consider partitioning the array of length n into segments of particular size. In each segment store all prefix and suffix products. Each query either falls fully into a single segment, or using one stored prefix and one suffix can be aligned with segments (and the solved with solution for $\ell-2$). Fill in the details, guess proper value of x for $\ell=3,4$ and solve the recursion.

Exercise 6: (\star)

Indirection

Recall a problem of longest common subsequence or equivalent problem of edit distance of two input strings u, v of length n. Classical DP solution works in time $\mathcal{O}(n^2)$. Show that it can be done in time $\mathcal{O}(n^2/\log^c n)$ for some (small) constant c > 0.

Hint:

DP solution works by filling 2d array with integers. This can be speed-up by cutting the table into square tiles of polylog size. Tile takes its top and left borders, and we only care about its bottom and right borders. However, we need a parametrization such that *number* of tiles of size x grows only as a function of x, and is independent from $|\Sigma|$ or n.