
Przemys law Uznański February 20, 2018

Advanced Data Structures

Spring Semester 2018

Exercise Set 1

Consider arbitrary associative operation ◦, and product queries of the form xi ◦xi+1 ◦ . . .◦xj.

Exercise 1:
Show the “trivial” solution from lecture to the product queries in arrays problem: given array
on n elements, precompute it in O(n) time and space to answer product queries in O(log n)
time.

Exercise 2:
Show a solution to Exercise 2 that works in a dynamic setting (supports assignments to any
xi in time O(log n)).

Exercise 3:
Consider (static) product queries on trees: every node holds a value, we query for product of
all values on a path between two given vertices. Show that we can preprocess any n-vertex
tree in O(n log n) time and space, to support queries for path product in O(log n) time.

Hint :
Store some auxiliary values regarding jumps towards the root of certain length.

Exercise 4:
Show that solution to Exercise 4 can be tweaked to have min queries on trees in O(1) time.

Hint :
Use the fact that min is idempotent, that is min(x, x) = x.

Exercise 5: (?)
Consider static data structure for product queries in arrays, where each query is answered
accessing at most ` cells with preprocessed data. Show, that input can be preprocessed in
time: O(n2), O(n log n), O(n log log n) and O(n log∗ n) for ` = 1, 2, 3 and 4 respectively.

Hint :
For ` = 2, you only need to “massage” previous solutions to have 2 memory cells accessed,
instead of O(1). For ` > 2, it is enough to consider partitioning the array of length n into
segments of particular size. In each segment store all prefix and suffix products. Each query
either falls fully into a single segment, or using one stored prefix and one suffix can be aligned
with segments (and the solved with solution for `− 2). Fill in the details, guess proper value
of x for ` = 3, 4 and solve the recursion.

Exercise 6: (?)
Indirection
Recall a problem of longest common subsequence or equivalent problem of edit distance of
two input strings u, v of length n. Classical DP solution works in time O(n2). Show that it
can be done in time O(n2/ logc n) for some (small) constant c > 0.

Hint :
DP solution works by filling 2d array with integers. This can be speed-up by cutting the
table into square tiles of polylog size. Tile takes its top and left borders, and we only care
about its bottom and right borders. However, we need a parametrization such that number
of tiles of size x grows only as a function of x, and is independent from |Σ| or n.

