Advanced Data Structures

Spring Semester 2017 Exercise Set 2

Exercise 1:

Show that a family of hash functions $h(x) = (ax) \mod m$, where $0 \le a < m$, is not universal.

Exercise 2: (\star) Assume that $u = 2^k$ and $m = 2^l$. Show that a family of hash functions $h(x) = \lfloor ((ax) \mod 2^k)/2^{k-l} \rfloor$, for $odd \ 0 < a < 2^k$ is universal.

Hint:

- (i) $A = \{a | 0 < a < 2^k \text{ and } a \text{ is odd}\}$ forms multiplicative group modulo 2^k .
- (ii) Consider x and y such that h(x) = h(y). What is the set I of all the possible values of $a \cdot (x y) \mod 2^k$ (for any such x and y)?
- (iii) Show that number of such a's that $a \cdot (x y) \mod 2^k \in I$ is equal to the number of such a's that $a \cdot 2^s \mod 2^k \in I$, where 2^s is the largest power-of-two divisor of x y.

Exercise 3:

Let $h(x) = [(\sum_{i=0}^{k-1} a_i x^i) \mod p] \mod m$, where $0 \le a_i < p$, $0 < a_{k-1} < p$ and p is a prime number which is greater than u. Show that h(x) is k-wise independent.

Hint:

Polynomial of degree k-1 in \mathbb{Z}_p is uniquely defined by its value on k distinct points.

Exercise 4:

Let $u = 2^{c\ell}$. For every key $0 \le x < u$, and $c \ge 2$. Let $h(x) = T_1(x_1) \oplus T_2(x_2) \dots \oplus T_c(x_c)$, where x_1, \dots, x_c are digits of x in 2^{ℓ} basis, and each T_i is totally random hash function $2^{\ell} \to 2^{\ell'}$, for some $\ell' \le \ell$.

Show that family of h(x) is 3-wise independent, but not 4-wise independent.

Hint:

4-wise independence: it is enough to point a single quadruple of distinct keys A, B, C, D for which h(A), h(B), h(C), h(D) are correlated.

3-wise independence:

Consider any triplet of keys A, B, C. Show that there is coordinate i, such that if we fix in place all hash functions except T_i , iterating over all possible values of T_i gives us identical probability for all possible values of (h(A), h(B), h(C)).

Useful fact: for any fixed $0 \le y < 2^{\ell}$, $x \to x \oplus y$ is a bijection.

Exercise 5:

Show that the longest chain in the FKS hashing scheme has length $\mathcal{O}(\frac{\lg n}{\lg \lg n})$, with high probability (that is, with probability at least 1 - 1/poly(n)).

${\it Hint}$:

Use Chernoff bound (where μ denotes E[X]):

$$\Pr(X > c\mu) < \left(\frac{e^{(c-1)}}{c^c}\right)^{\mu}.$$