
Przemys law Uznański March 20, 2018

Advanced Data Structures

Spring Semester 2018

Exercise Set 5

Assume we have T [1, n] over alphabet Σ. T is such that its last letter is a special character
such that # < c for c ∈ Σ and # does not appear anywhere else in T . Consider following
operation: we write matrix M such that its rows M [1],M [2], . . . ,M [n] are all cyclic rotations
of T , sorted lexicographically, that is M [1] < M [2] < . . . < M [n].

Definition. The text written on the last column of M is called its Burrows-Wheeler trans-
formation. That is, BWT[j] = M [j][n].

For example:
T = mississippi#

M =

m i s s i s s i p p i

i # m i s s i s s i p p

i p p i # m i s s i s s

i s s i p p i # m i s s

i s s i s s i p p i # m

m i s s i s s i p p i #

p i # m i s s i s s i p

p p i # m i s s i s s i

s i p p i # m i s s i s

s i s s i p p i # m i s

s s i p p i # m i s s i

s s i s s i p p i # m i

BWT(T) = ipssm#pissii

Exercise 1:
Reverse transformation: Show that given only BWT, we can recover text T in time O(n).

Hint: Each letter of input appears once in the first column M [·][1] and once in the last
column M [·][n]. Call the relation mapping those occurences LF (last-first). Show that LF
can be recovered using rankc queries, one query per entry. You can use either wavelet trees
for O(n log |Σ|) time, or observe that those offline queries can be batch processed.

Exercise 2:
Show that given only BWT, we can recover its suffix-array in time O(n).

Hint: Use LF structure from previous exercise.

Exercise 3:
Show that storing only wavelet tree of BWT and some O(n/t · log n) bits of auxilary data,
we can access suffix array values in O(t · log |Σ|) time per value.

Hint: Store explicitly some n/t values from suffix array.

Exercise 4:
Show that given only wavelet tree of BWT, we process the queries of form is pattern P in T in
time O(|P | · log |Σ|), and given additionally its suffix array SA, we can list all the occurences
in time O(|P | · log |Σ|+ occ).

Hint: Any pattern occurs as a prefix of a suffix and all of its occurences occur on positions
SA[a], SA[a + 1], . . . , SA[b] for some a, b. You can go from occurences of P to occurences of
xP for some x ∈ Σ using two rank queries (that is, maintain range of occurences in suffix
array using right-to-left scan through the pattern).

