Advanced Data Structures

Spring Semester 2018 Exercise Set 5

Assume we have T[1, n] over alphabet Σ . T is such that its last letter is a special character # such that # < c for $c \in \Sigma$ and # does not appear anywhere else in T. Consider following operation: we write matrix M such that its rows $M[1], M[2], \ldots, M[n]$ are all cyclic rotations of T, sorted lexicographically, that is $M[1] < M[2] < \ldots < M[n]$.

Definition. The text written on the last column of M is called its Burrows-Wheeler transformation. That is, $\mathsf{BWT}[j] = M[j][n]$.

For example:

 $T = {\tt mississippi\#}$

M =	#	m	i	ន	ន	i	ន	ន	i	р	р	i
	i	#	m	i	ន	ន	i	ន	ន	i	р	р
	i	р	р	i	#	m	i	ធ	ធ	i	s	ន
	i	ន	ន	i	р	р	i	#	m	i	s	ន
	i	ន	ន	i	ធ	ន	i	р	р	i	#	m
	m	i	ន	ន	i	ន	ន	i	р	р	i	#
	р	i	#	m	i	ន	ន	i	ន	ន	i	р
	р	р	i	#	m	i	ន	ន	i	ន	s	i
	ន	i	р	р	i	#	m	i	ន	ន	i	s
	ន	i	ន	S	i	р	р	i	#	m	i	s
	ន	ន	i	р	р	i	#	m	i	ន	ន	i
	ន	ន	i	ន	ន	i	р	p	i	#	m	i

 $\mathsf{BWT}(T) = \mathsf{ipssm\#pissii}$

Exercise 1:

Reverse transformation: Show that given only BWT, we can recover text T in time $\mathcal{O}(n)$.

Hint: Each letter of input appears once in the first column $M[\cdot][1]$ and once in the last column $M[\cdot][n]$. Call the relation mapping those occurrences LF (last-first). Show that LF can be recovered using rank_c queries, one query per entry. You can use either wavelet trees for $\mathcal{O}(n \log |\Sigma|)$ time, or observe that those offline queries can be batch processed.

Exercise 2:

Show that given only BWT, we can recover its suffix-array in time $\mathcal{O}(n)$.

Hint: Use LF structure from previous exercise.

Exercise 3:

Show that storing only wavelet tree of BWT and some $\mathcal{O}(n/t \cdot \log n)$ bits of auxiliary data, we can access suffix array values in $\mathcal{O}(t \cdot \log |\Sigma|)$ time per value.

Hint: Store explicitly some n/t values from suffix array.

Exercise 4:

Show that given only wavelet tree of BWT, we process the queries of form is pattern P in T in time $\mathcal{O}(|P| \cdot \log |\Sigma|)$, and given additionally its suffix array SA, we can list all the occurences in time $\mathcal{O}(|P| \cdot \log |\Sigma| + occ)$.

Hint: Any pattern occurs as a prefix of a suffix and all of its occurences occur on positions $SA[a], SA[a+1], \ldots, SA[b]$ for some a, b. You can go from occurences of P to occurences of xP for some $x \in \Sigma$ using two rank queries (that is, maintain range of occurences in suffix array using right-to-left scan through the pattern).