Advanced Data Structures Spring Semester 2018 Exercise Set 8 ## Exercise 1: Given a dynamic weighted graph G(V, E), where |V| = n and |E| = m, we attempt to extend the fully dynamic connectivity data structure to build a dynamic minimum spanning tree data structure that allows only deletion operations. Recall the key ingredients for the fully dynamic connectivity as follows - Assign each edge a *level* that starts at $\log n$ but only decreases over time. - Let G_i be the subgraph of G consisting of edges with level at most i, i.e., $G_0 \subseteq G_1 \subseteq \cdots \subseteq G_{\log n} = G$. - Let F_i be a spanning forest of G_i for $1 \le i \le \log n$, and let F be $F_{\log n}$. Two invariants are required for fully dynamic connectivity: **Invariant 1.** Every connected component G_i has at most 2^i vertices. **Invariant 2.** $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_{\log n}$, and F is a minimum spanning tree/forest of G if the level of an edge is interpreted as its weight. If the deletion of an edge e = (u, v) separates a tree $T \in F$ into two subtree T_v and T_u , then we need to find the lightest edge connecting T_v and T_u as the replacement edge. Therefore, another invariant is suggested: **Invariant 3.** Every cycle C has a non-tree edge of maximum weight and maximum level among all the edges in C. Please complete the following two tasks: - Prove that among all the replacement edges, the lightest edge is on the minimum level. - Assume the level of e to be ℓ , and describe how to find the replacement edge. **Hint**: Consider two replacement edge e_1 and e_2 where the weight of e_1 is larger than the weight e_2 . Before the deletion of e, inserting e_1 (resp. e_2) into F will form a cycle C_1 (resp. C_2). Compare the levels of e_1 and e_2 using Invariant 3 and the cycle $C = C_1 \cup C_2 \setminus C_1 \cap C_2$. ## Exercise 2: Please prove the lower bound of a deletion operation for the dynamic minimum spanning tree data structure to be $\Omega(\log n)$. ## Hint: • Reduce the standard sorting problem to a sequence of deletion operations.