Lecture 4
Linear Algebra Methods in
Combinatorics

with Applications to Geometry and CS

11213456

Tools from the previous lectures

Recall the Oddtown problem and its upper bound.

1 Ramsey Theorem (and Ramsey graphs)

Color the edges of the complete graph over n nodes using two colors (red and
blue) without creating a monochromatic triangle:

A
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yes yes yes no

Exercise 1. Prove that if you color the complete graph with six nodes with
two colors, then you cannot avoid a monochromatic triangle (i.e., three
nodes whose three edges get all the same color).
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We could increase the number of colors or the “size of the triangle”, but
eventually such monochromatic component must appear:

Ramsey Theorem for graphs (informal). Fix the number of colors
¢ and some parameter k. For n large enough, you cannot color the
complete graph with n (or more) nodes without creating a complete
subgraph of size k with all edges getting the same color.

Now try to color numbers instead, and try to avoid triples a, b, a + b
that get the same color (also for a = b):

12134 — (1|34

1234 — 112

Schur Theorem (informal) No matter how we fix the number ¢ of
colors, if we color the integers {1,2,...,n} with ¢ colors, and n is large
enough, then there exist integers a, b and a + b that get the same color.

1.1 More about two colors

A nice trick to prove the Ramsey Theorem for two colors is to consider a
generalization where we specify different size for the monochromatic com-
ponents of the two colors:

No blue component of size s and no red component of size t. |

Theorem 1 (Ramsey Theorem for graphs — two-color version). For every
natural numbers s and t there exists a natural number n = R(s,t) such that, if
we color the complete graph with n or more nodes using colors red and blue,
there must be either a red complete subgraph of size s or a blue complete
subgraph of size t.

Proof. We show by induction on s + ¢ that the number R(s,t) exists (and is
finite). The main idea is to prove the following:

R(s,t) < R(s —1,t)+ R(s,t — 1) (1)



This inequality means that, if we color the graph with n = R(s—1,t)+R(s,t—
1) nodes, then either there is a monochromatic red component of size s or a
monochromatic blue component of size t. By contradiction, suppose we can
color this graph without creating these monochromatic components (red of
size s or blue of size t). Take any node (say node 1) and look at the neighbors
(all other nodes):

1

A

The coloring of these edges splits these nodes into two groups (as shown in
the figure). The key observation is that the n; nodes on the left cannot form
a red component of size s — 1 (otherwise this component plus node 1 yields
a red component of size s). Of course we still “forbid” a blue component of
size t among these nodes. So, by inductive hypothesis, we have that

ny < R(s—1,t)
and by a symmetric argument
ne < R(s,t—1)

This is not possible because n = 1 + ny + no, while these inequalities tell us
ny < R(s—1,t) — 1 and ny < R(s,t — 1) — 1. To conclude the proof, we
observe that the base case for the induction is given by

R(1,1) = R(1,#) = R(s,1) = 1

¢

because a single node is a “monochromatic” component of size 1 (all of the
edges get the same color...just because there are no edges to color).! O]

The proof can be turned into a concrete upper bound:

sS+t—2
S_

R(s,t) < and R(t,t) <4 (2)
C35)

f you find this strange, you can start with a base case R(2,t) =t + 1 = R(t,2).



Exercise 2. Prove (2) by using the identity (Z) = (Zj) + (";1)

The two colors can be viewed as “red = remove the edge”:

Two-colors revisited:

e Every “sufficiently large” graph must contain a clique of size ¢
or an independent set of size ¢ (Ramsey Theorem restated).

e i-Ramsey graph is a graph which does not contain a clique
of size t nor an independent set of size ¢ (a coloring with no
monochromatic component of size t).

LB(t) < R(t,t) < UB(t)
—— —_——
find a construction prove the theorem

How large can be a t-Ramsey graph?
e No t-Ramsey graph of size 4" (proof above).
e There are t-Ramsey graphs of size 2¢/2 (probabilistic method — below)

which in other words means

<\/§>t < R(t,t) < 4 (3)

1.2 Probabilistic method

There exist t-Ramsey graphs of size 2¢/2.

Color each edge blue with probability 1/2 and red with probability 1/2.
If this is done independently for each edge, then we can show that the
probability of a monochromatic component is less than 1 (if the graph is
“not too big”).

e Every subset S of size t has (
subset is monochromatic is

;) edges and the probability that this

Pr[MONg] =2 -1/20)
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e The union bound? implies that the probability of some monochro-

matic subset is at most
< (TZ) .1/2(5)_1

Pr [U MON5
S
e For n < 242 this probability is < 1 and thus there must be one coloring
with no monochromatic component of size t.

2 Explicit constructions

Quadratic construction. Partition all nodes into blocks of the same size
(except maybe the last block). Color edges “inside the same block” blue,
and edges across blocks red:

SS

The largest monochromatic blue component is at most the size of a block.
The largest monochromatic red component is at most the number of blocks.

Exercise 3. Prove that this construction yields t-Ramsey graphs of size

o(t?).

Cubic construction. FEach node corresponds to a subset S; C [n] of size

3 (so we have (3) = ©(n®) nodes). The color of each edge (S;,S;) depends

on the cardinality of the intersection
1S; N S;| €{0,1,2}
Suppose we color as follows:
e Red if |S; N 5| is even;

e Blue if |S; N .S;| is odd.
2Pr[Ey U - U Ey] < Pr[Eq] + - -+ + Pr[Ey]
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Exercise 4. Prove that the largest red complete subgraph has size at most
n. (Hint: use the Oddtown problem.)

For the blue complete subgraphs we use the following result (which is
interesting by itself):

Theorem 2 (Fisher inequality). If subsets Sy, ..., S, C [n| satisfy
|1S;iNS;|=c¢ foralli#j
then m < n.

Proof. We first prove the theorem for the case in which all subsets have the
same cardinality larger than ¢, i.e., |S;| > ¢. Consider the 0/1-vectors corre-
sponding to these subsets. Then the condition on the intersections becomes

vi-v;=c foralli#j
We show that these vectors must be linearly independent. If

)\101+"'+>\m?)m:0

then
0 = ()\1’01 + -+ )\mvm)()\lvl + -+ /\mvm) (4)
i i,ji
= D (NS = Xe)+ > AiNje (6)
) ,J

The first summation is positive if at least one A\; # 0 (here we use |S;| > ¢).
The second summation is equal to ¢(A; + -+ + A, )? which is nonnegative.
We conclude that it must be A\ = --- = \,, = 0. These vectors are linearly
independent and the linear algebra bound yields m < n.

Finally, for the general case, we observe that it cannot happen that |S;| <
c. If one |S;| = ¢ then a simple argument shows that m < n (Exercise!). O

Fisher inequality says that, in our construction, the largest blue complete
subgraph has size at most n (Exercise!) and thus:

There is an explicit construction of (¢ + 1)-Ramsey graphs of size ().




Linear Algebra Bound

‘/\ S,
Oddtown Fisher inequality I |5: 1551 € {ol[1) 2}
S .

Cubic construction

3 What to remember and where to look

The idea of the cubic construction is to color edges according to the “dis-
tances” between the endpoints: here distance means size of the intersection.
The idea is that there cannot be a “too large” red component because this
would give a “large” solution for Oddtown (and we know already that this
cannot happen). For the blue component, we introduced a similar theorem
(Fisher inequality). In the next lecture we will use this idea, but with more
general theorems so we can increase the size of the graph that we construct
(from cubic to superpolynomial).

The proofs of the Ramsey Theorem (Theorem 1) and of Fisher inequality
(Theorem 2) are from [Juk01]. The cubic construction of Ramsey graphs is
in [BF92, Sect. 4.2].

More about Ramsey theorems (if you want to know more). It is
possible to generalize the result in Theorem 1 to this case: color r-regular
hypergraphs, that is, color all subsets of size r of [n] using any number
c of colors (see e.g. [JukOl]). The exact values of the Ramsey Numbers
R(t) = R(t,t) are known only for R(3) = 6 and R(4) = 18. For t = 5 we
only know that 43 < R(5) < 48 (two years ago!!l), while 798 < R(10) < 23556
(big gap!!) You can find these bounds in [Rad94]. To see how a 5-Ramsey
graph is constructed look at [Exo89] (less than two pages!!).
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Exercises
(during next exercise class - 15.3.2018)

We shall discuss and solve together the following exercise:

Exercise 5. Here is an improvement of the cubic construction of Ramsey
graphs. Each node corresponds to a subset S; C [n] of size 4 (so we have
(1) = ©(n*) nodes). The color of each edge (S;, S;) depends on the cardinality
of the intersection

1S;inS;| € {0,1,2,3}

Suppose we color as follows:
e Red if |S; N S;| is even;
e Blue if |S; N S;| is odd.

Claim: The largest red complete subgraph has size at most n. Same for the
largest blue complete subgraph.

The claim is false and the construction does not give any improvement.
Explain why. Try the same with subsets of size 5 instead. Does it give an
improvement over the cubic construction?
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