
Lecture 6
Linear Algebra Methods in

Combinatorics
with Applications to Geometry and CS

1 Helly’s Theorem

The three convex objects in the figure above (left) intersect all in a common
point (the intersection of the three of them is non-empty). Can you have four
convex objects such that every triple of them intersects in a common
point but no point belongs to all of them? The red object in the right
picture is not convex.

Convexity can be defined in terms of “special” linear combinations:

We say that λ1v1 + · · ·+ λmvm is a convex combination if

λ1 + · · ·+ λm = 1 and λi ≥ 0

(Here vi ∈ Rn are vectors and λi ∈ R.)
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We denote the set of all convex combinations of vectors v1, . . . , vm ∈ Rn

as
conv(v1, . . . , vm)

which is the “analogous” of the span, though restricted to convex combina-
tions. Point and vectors are the same, so we often talk about a set of points
S = {v1, . . . , vm}, and write “conv(S)” in place of “conv(v1, . . . , vm)”; this is
the so called convex hull of the set of points S.

A convex object (or convex set) is a set C ⊆ Rn which is closed
under linear combinations (every convex combination of v1, . . . , vk ∈ C
belongs also to the set C).

Theorem 1 (Helly’s Thm. – dummy version). If C1, C2, C3, C4 are convex
objects in 2D and any three of them have non-empty intersection, then the
intersection of all of them is also non-empty.

Proof Idea – has a mistake. We have four intersections (one for each “omit-
ted” object) and each of them must contain a point (the intersections of three
objects are non-empty):

I1 := C2 ∩ C3 ∩ C4 → p1

I2 := C1 ∩ C3 ∩ C4 → p2

I3 := C1 ∩ C2 ∩ C4 → p3

I4 := C1 ∩ C2 ∩ C3 → p4

Each segment between two points belongs to the corresponding intersections:

segment(p1, p2) ∈ I1 ∩ I2
Finally, we can draw two such segments that must also intersect in some
point p. This common point will belong to all objects:

C1 ∩ C2 ∩ C4

C1 ∩ C3 ∩ C4

C2 ∩ C3 ∩ C4

C1 ∩ C2 ∩ C3

2



Exercise 1. Find the mistake in the proof above.

Surprisingly the same is true for any number of objects:

Theorem 2 (Helly’s Thm. in 2D). If C1, C2, . . . , Cm are convex objects in
2D and any three of them intersect (in a common point), then all of them
intersect (the common intersection is non-empty).

Proof Idea. The proof is by induction on m and it uses the fact that the
intersection of two convex objects is also convex (see Exercise 2).

To get the idea we prove the case m = 5. We reduce to the previous
theorem (m = 4) by replacing the last two objects (or any two of them) by
their intersection:

C1 C2 C3 C4 C5

C ′
1 C ′

2 C ′
3 C ′

4︸︷︷︸
C4∩C5

In order to apply the theorem for m′ = 4 we need two things:

• C ′
4 is also convex (Exercise 2);

• Any three sets among C ′
1, C

′
2, C

′
3, C

′
4 intersect

(Exercise: use Theorem 1 to prove that, for instance, C ′
1, C

′
2 and C ′

4

intersect).

Theorem 1 says that there is a point

p′ ∈ C ′
1 ∩ C ′

2 ∩ C ′
3 ∩ C ′

4 = C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5

and thus the intersection of our original 5 points is nonempty.

1.1 Towards higher dimensions...

What happens in 3D? We have 5 objects and thus 5 points (coming from the
intersections of all but one subset):
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I3

I2

I5

I1

I4

We can find 3 points whose convex hull intersects the line through the re-
maining two points.

Lemma 3 (Radon). Let S is a set of m ≥ d + 2 points in Rd. Then S has
two disjoint subsets SA and SB whose convex hulls intersect.

Proof. Look at the matrix (our points are vectors in Rd)

M =




| |
p1 · · · pd+2

| |
1 · · · 1




and simply because this is an (d+1)× (d+2)-matrix, there is a vector λ 6= 0
such that Mλ = 0. That is,

λ1p1 + · · ·+ λd+2pd+2 = 0 with
∑

i

λi = 0

and at least one λi 6= 0. The partition is

SA = {pa|λa > 0} SB = {pb|λb < 0}

(Can you tell why these subsets are nonempty?)
So we have ∑

a∈A

λapa +
∑

b∈B

λbpb = 0

and ∑

a∈A

λa +
∑

b∈B

λb = 0
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Take λ+b
4
= −λb for those in SB and obtain

∑

a∈A

λapa =
∑

b∈B

λ+b pb

and ∑

a∈A

λa

︸ ︷︷ ︸
sumA

=
∑

b∈B

λ+b

︸ ︷︷ ︸
sumB

Since sumA = sumB we can obtain convex combinations by dividing both
sides by this quantity:

∑

a∈A

λa
sumA

pa =
∑

b∈B

λ+b
sumB

pb (1)

(Can you see that these are convex combinations?)
This tells us that there is a point p ∈ conv(SA) ∩ conv(SB) and thus these
convex hulls intersect.

Theorem 4 (Helly). If C1, C2, . . . , Cm are convex objects in Rd with m ≥
d+ 2 and any d+ 1 of them intersect (in a common point), then all of them
intersect (the common intersection is non-empty).

Proof Sketch. We first prove the case m = d + 2 (“dummy version”). We
have the following steps:

1. Map each object Ci into an intersection which “excludes Ci”:

C1 → I1 := C2 ∩ C3 ∩ · · · ∩ Cd+2 → p1
C2 → I2 := C1 ∩ C3 ∩ · · · ∩ Cd+2 → p2

...
Cd+2 → Id+2 := C1 ∩ C2 ∩ · · · ∩ Cd+1 → pd+2

2. Apply Radon’s Lemma to this set of points:

conv(SA) ∩ conv(SB) 6= ∅

which means that there is a point p with

p ∈ conv(SA) and p ∈ conv(SB) (2)
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3. We claim that for any pa ∈ SA and pb ∈ SB

conv(SA) ⊆ Cb and conv(SB) ⊆ Ca (3)

(Exercise)

4. By the previous two items we have

p ∈ conv(SA) ⊆ Cb and p ∈ conv(SB) ⊆ Ca . (4)

for every pa ∈ SA and pb ∈ SB. Since SA and SB are a partition of S,
we have that p ∈ Ci for every i, that is

p ∈ C1 ∩ · · · ∩ Cm

Finally the case m > d+ 2 can be proved by induction on m (Exercise).

2 “Helly-theorems” for graphs

Here is a simple example of a “combinatorial version” of Helly’s Theorem:

Example 5. Every three edges of a graph intersect in one node =⇒ All
edges intersect in one node.

Note that each triple can be covered by a different node, so it is not
obvious that one node can cover all of them: if we have triples of edges

T1, T2, . . .

we only know that some node n1 covers T1 and (a possibly different) node
n2 covers T2, and so on...

We can see this as a vertex cover problem: (a) For every three edges one
vertex is enough to cover them, implies (b) The graph has a vertex cover of
size one. The following theorem generalizes the previous example (no proof
for now):

Theorem 6 (Erdös-Hajnal-Moon). If every subset of
(
s+2
2

)
edges of a graph

can be covered by s nodes, then all edges of the graph can be covered by s
nodes.
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One can go even further and replace edges (2-subsets) by hyperedges
of uniform size (r-subsets). The hypergraph is just a collection of subsets of
exactly r nodes, also called r-uniform set system:1

Theorem 7 (Bollobás). If every subfamily of at most
(
s+r
r

)
members of an

r-uniform set system can be covered by s nodes, then all members can.

We shall prove Bollobás Theorem in the next lecture. For the moment
observe that these “Helly-type” theorems are of the form

Local Condition =⇒ Global Condition

3 Exercises

Exercise 2. Prove that the intersection of two convex objects C1 and C2 is
also convex.

Exercise 3. Prove Theorem 2. Proceed by induction on m adapting the proof
given for m = 5:

1. Reduce the number of objects to m′ = m− 1;

2. Explain why you can apply the inductive hypothesis to these m′ objects;

3. Derive from the inductive hypothesis that the original m objects inter-
sect in a common point.

Also explain the base case of the induction.

Exercise 4. Prove Helly’s Theorem 4 using Radon’s Lemma 3 for the case
d = 3 and m = 5 objects. That is, suppose C1, . . . , C5 are convex objects in
R3 and every 4 of them intersect. Show that they all intersect.

Exercise 5. Prove the result mentioned in Example 5.

More exercises will be in the “Exercise Set 6”.

1An r-uniform set system is a family F = {S1, . . . , Sm} where Si ⊆ [n] and |Si| = r
for all i. This is just a “set of subsets” and we call it family just to avoid confusion; any
subset of F gives another family consisting of some of the members of F .
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Exercises

(during next exercise class - 29.3.2018)

We shall discuss and solve together the following exercise:

Exercise 6. Consider the following generalization of the statement in Ex-
ample 5:

Every subset of s + 2 edges (in a given graph) can be covered by
s nodes =⇒ All edges can be covered by s nodes (the graph has
a vertex cover of size s).

This statement is false for all s ≥ 2. Disprove it.
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