Lecture 6
Linear Algebra Methods in
Combinatorics

with Applications to Geometry and CS

1 Helly’s Theorem

The three convex objects in the figure above (left) intersect all in a common
point (the intersection of the three of them is non-empty). Can you have four
convex objects such that every triple of them intersects in a common
point but no point belongs to all of them? The red object in the right

picture is not convex.

Convexity can be defined in terms of “special” linear combinations:

We say that A\jv; + -+ + \,0,, is a convex combination if

>\1++)\m:1 and )\120

(Here v; € R™ are vectors and \; € R.)




We denote the set of all convex combinations of vectors vy,...,v,, € R"
as
conv(vy, ..., Um)

which is the “analogous” of the span, though restricted to convex combina-
tions. Point and vectors are the same, so we often talk about a set of points
S ={vy,...,v,}, and write “conv(S)” in place of “conv(vy,...,v,)"; this is
the so called convex hull of the set of points S.

A convex object (or convex set) is a set C' C R" which is closed
under linear combinations (every convex combination of vy, ..., v, € C
belongs also to the set C').

Theorem 1 (Helly’s Thm. — dummy version). If Cy,Cy, C3,Cy are convex
objects in 2D and any three of them have non-empty intersection, then the
intersection of all of them is also non-empty.

Proof Idea — has a mistake. We have four intersections (one for each “omit-
ted” object) and each of them must contain a point (the intersections of three
objects are non-empty):

L =CNnCsNCy —
L =CiNnC3NCy — po
Is:=CiNCyNCy — p3
I =CiNCyNCs — py

Each segment between two points belongs to the corresponding intersections:
segment(py,p2) € Iy N Iy

Finally, we can draw two such segments that must also intersect in some
point p. This common point will belong to all objects:

CinNnCynNCs CinNnC3NCy

CinCynNCy
ConC3nNCy



Exercise 1. Find the mistake in the proof above.
Surprisingly the same is true for any number of objects:

Theorem 2 (Helly’s Thm. in 2D). If C1,Cy, ..., C,, are convex objects in
2D and any three of them intersect (in a common point), then all of them
intersect (the common intersection is non-empty).

Proof Idea. The proof is by induction on m and it uses the fact that the
intersection of two convex objects is also convex (see Exercise 2).

To get the idea we prove the case m = 5. We reduce to the previous
theorem (m = 4) by replacing the last two objects (or any two of them) by
their intersection:

Ci, Cy Cs (4

VLN
cp Gy O3 O
~—
C4NChy
In order to apply the theorem for m’ = 4 we need two things:

e () is also convex (Exercise 2);

e Any three sets among C7, C5, C%, C intersect
(Exercise: use Theorem 1 to prove that, for instance, C7, C} and C}
intersect).

Theorem 1 says that there is a point
pPecinC,NC;NC,=CNCy,NC3NCyNCs

and thus the intersection of our original 5 points is nonempty. O]

1.1 Towards higher dimensions...

What happens in 3D? We have 5 objects and thus 5 points (coming from the
intersections of all but one subset):



I

Iy
We can find 3 points whose convex hull intersects the line through the re-

maining two points.

Lemma 3 (Radon). Let S is a set of m > d + 2 points in R%. Then S has
two disjoint subsets Sy and Sp whose convex hulls intersect.

Proof. Look at the matrix (our points are vectors in R)

| |
M = p|1 pd|+2
\1 1/

and simply because this is an (d+ 1) x (d+ 2)-matrix, there is a vector A # 0
such that M\ = 0. That is,

Mpr+ o+ Adapoparz =0 with Y A =0

and at least one \; # 0. The partition is
Sa = {pa|>‘a > 0} Sp = {pb|)‘b < O}

(Can you tell why these subsets are nonempty?)

So we have
Z )‘apa + Z )‘bpb =0

a€A beB
and
DAt =0
acA beB
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Take A} 2 — )\ for those in Sg and obtain

> A=Y N

acA beB
and
_ +
D A= N
ac€A beB
——
sum sump

Since sumy = sump we can obtain convex combinations by dividing both
sides by this quantity:

IR DE g
sumApa N sumeb

acA beB

(Can you see that these are convex combinations?)
This tells us that there is a point p € conv(S4) N conv(Sg) and thus these
convex hulls intersect. O

Theorem 4 (Helly). If C,Cs,...,C,, are convex objects in R with m >
d+2 and any d+ 1 of them intersect (in a common point), then all of them
intersect (the common intersection is non-empty).

Proof Sketch. We first prove the case m = d + 2 (“dummy version”). We
have the following steps:

1. Map each object C; into an intersection which “excludes C;”:

Ci— L:=0CNnC3N---NCypa - m
Co— L:=01NC3N---NCyia — Do
Caio —> Iypo =CiNCN---NCyy1 — Paso
2. Apply Radon’s Lemma to this set of points:
conv(S4) Nconv(Sg) # 0
which means that there is a point p with

p € conv(S4) and p € conv(Sp) (2)



3. We claim that for any p, € Sy and p, € S
conv(S4) CC, and conv(Sg) C C, (3)
(Exercise)

4. By the previous two items we have
p € conv(Sy) CCy, and p € conv(Sg) CC, . (4)

for every p, € Sa and p, € Sg. Since Sy and Sp are a partition of S,
we have that p € C; for every ¢, that is

peCin---NC,

Finally the case m > d + 2 can be proved by induction on m (Exercise). [

2 “Helly-theorems” for graphs

Here is a simple example of a “combinatorial version” of Helly’s Theorem:

Example 5. Fvery three edges of a graph intersect in one node —> All
edges intersect in one node.

Note that each triple can be covered by a different node, so it is not
obvious that one node can cover all of them: if we have triples of edges

T, Ty, ...

we only know that some node n; covers T} and (a possibly different) node
ng covers 15, and so on...

We can see this as a vertex cover problem: (a) For every three edges one
vertex is enough to cover them, implies (b) The graph has a vertex cover of
size one. The following theorem generalizes the previous example (no proof
for now):

Theorem 6 (Erdés-Hajnal-Moon). If every subset of (822) edges of a graph
can be covered by s nodes, then all edges of the graph can be covered by s
nodes.



One can go even further and replace edges (2-subsets) by hyperedges
of uniform size (r-subsets). The hypergraph is just a collection of subsets of
exactly r nodes, also called r-uniform set system:!

Theorem 7 (Bollobas). If every subfamily of at most (SJT”’) members of an

r-uniform set system can be covered by s nodes, then all members can.

We shall prove Bollobas Theorem in the next lecture. For the moment
observe that these “Helly-type” theorems are of the form

| Local Condition = Global Condition

3 Exercises

Exercise 2. Prove that the intersection of two convex objects Cy and Cy 1is
also convet.

Exercise 3. Prove Theorem 2. Proceed by induction on m adapting the proof
gwen for m = b:

1. Reduce the number of objects to m' =m —1;
2. Explain why you can apply the inductive hypothesis to these m’ objects;

3. Derive from the inductive hypothesis that the original m objects inter-
sect in a common point.

Also explain the base case of the induction.

Exercise 4. Prove Helly’s Theorem 4 using Radon’s Lemma 3 for the case
d =3 and m = 5 objects. That is, suppose Cy,...,Cs are convexr objects in
R3 and every 4 of them intersect. Show that they all intersect.

Exercise 5. Prove the result mentioned in FExample 5.

More exercises will be in the “Exercise Set 6”.

!An r-uniform set system is a family F = {S1,...,S,,} where S; C [n] and |S;| = r
for all 4. This is just a “set of subsets” and we call it family just to avoid confusion; any
subset of F gives another family consisting of some of the members of F.
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Exercises
(during next exercise class - 29.3.2018)

We shall discuss and solve together the following exercise:

Exercise 6. Consider the following generalization of the statement in Fx-
ample 5:

Every subset of s + 2 edges (in a given graph) can be covered by
s nodes = All edges can be covered by s nodes (the graph has
a vertex cover of size s).

This statement is false for all s > 2. Disprove it.
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