Lecture 6

Linear Algebra Methods in Combinatorics

with Applications to Geometry and CS

1 Helly's Theorem

The three **convex** objects in the figure above (left) intersect all in a common point (the intersection of the three of them is non-empty). Can you have **four** convex objects such that **every triple of them intersects** in a common point but **no point belongs to all of them**? The red object in the right picture is not convex.

Convexity can be defined in terms of "special" linear combinations:

We say that $\lambda_1 v_1 + \cdots + \lambda_m v_m$ is a **convex combination** if

$$\lambda_1 + \dots + \lambda_m = 1$$
 and $\lambda_i \ge 0$

(Here $v_i \in \mathbb{R}^n$ are vectors and $\lambda_i \in \mathbb{R}$.)

We denote the set of all convex combinations of vectors $v_1, \ldots, v_m \in \mathbb{R}^n$ as

$$\operatorname{conv}(v_1,\ldots,v_m)$$

which is the "analogous" of the span, though restricted to convex combinations. Point and vectors are the same, so we often talk about a set of points $S = \{v_1, \ldots, v_m\}$, and write "conv(S)" in place of "conv(v_1, \ldots, v_m)"; this is the so called **convex hull** of the set of points S.

A **convex object** (or convex set) is a set $C \subseteq \mathbb{R}^n$ which is closed under linear combinations (every convex combination of $v_1, \ldots, v_k \in C$ belongs also to the set C).

Theorem 1 (Helly's Thm. – dummy version). If C_1, C_2, C_3, C_4 are convex objects in 2D and any three of them have non-empty intersection, then the intersection of all of them is also non-empty.

Proof Idea – has a mistake. We have four intersections (one for each "omitted" object) and each of them must contain a point (the intersections of three objects are non-empty):

$$\begin{split} I_1 &:= C_2 \cap C_3 \cap C_4 &\to p_1 \\ I_2 &:= C_1 \cap C_3 \cap C_4 &\to p_2 \\ I_3 &:= C_1 \cap C_2 \cap C_4 &\to p_3 \\ I_4 &:= C_1 \cap C_2 \cap C_3 &\to p_4 \end{split}$$

Each segment between two points belongs to the corresponding intersections:

$$segment(p_1,p_2) \in I_1 \cap I_2$$

Finally, we can draw two such segments that must also intersect in some point p. This common point will belong to **all** objects:

Exercise 1. Find the mistake in the proof above.

Surprisingly the same is true for any number of objects:

Theorem 2 (Helly's Thm. in 2D). If C_1, C_2, \ldots, C_m are convex objects in 2D and any three of them intersect (in a common point), then all of them intersect (the common intersection is non-empty).

Proof Idea. The proof is by induction on m and it uses the fact that the intersection of two convex objects is also convex (see Exercise 2).

To get the idea we prove the case m=5. We reduce to the previous theorem (m=4) by replacing the last two objects (or any two of them) by their intersection:

In order to apply the theorem for m' = 4 we need two things:

- C'_4 is also convex (Exercise 2);
- Any three sets among C'_1, C'_2, C'_3, C'_4 intersect (**Exercise:** use Theorem 1 to prove that, for instance, C'_1, C'_2 and C'_4 intersect).

Theorem 1 says that there is a point

$$p' \in C_1' \cap C_2' \cap C_3' \cap C_4' = C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_5$$

and thus the intersection of our original 5 points is nonempty.

1.1 Towards higher dimensions...

What happens in 3D? We have 5 objects and thus 5 points (coming from the intersections of all but one subset):

We can find 3 points whose convex hull intersects the line through the remaining two points.

Lemma 3 (Radon). Let S is a set of $m \ge d + 2$ points in \mathbb{R}^d . Then S has two disjoint subsets S_A and S_B whose convex hulls intersect.

Proof. Look at the matrix (our points are vectors in \mathbb{R}^d)

$$M = \begin{pmatrix} | & & | \\ p_1 & \cdots & p_{d+2} \\ | & & | \\ 1 & \cdots & 1 \end{pmatrix}$$

and simply because this is an $(d+1) \times (d+2)$ -matrix, there is a vector $\lambda \neq \mathbf{0}$ such that $M\lambda = 0$. That is,

$$\lambda_1 p_1 + \dots + \lambda_{d+2} p_{d+2} = \mathbf{0}$$
 with $\sum_i \lambda_i = 0$

and at least one $\lambda_i \neq 0$. The partition is

$$S_A = \{p_a | \lambda_a > 0\} \qquad S_B = \{p_b | \lambda_b < 0\}$$

(Can you tell why these subsets are nonempty?)

So we have

$$\sum_{a \in A} \lambda_a p_a + \sum_{b \in B} \lambda_b p_b = \mathbf{0}$$

and

$$\sum_{a \in A} \lambda_a + \sum_{b \in B} \lambda_b = 0$$

Take $\lambda_b^+ \stackrel{\triangle}{=} -\lambda_b$ for those in S_B and obtain

$$\sum_{a \in A} \lambda_a p_a = \sum_{b \in B} \lambda_b^+ p_b$$

and

$$\underbrace{\sum_{a \in A} \lambda_a}_{sum_A} = \underbrace{\sum_{b \in B} \lambda_b^+}_{sum_B}$$

Since $sum_A = sum_B$ we can obtain **convex** combinations by dividing both sides by this quantity:

$$\sum_{a \in A} \frac{\lambda_a}{sum_A} p_a = \sum_{b \in B} \frac{\lambda_b^+}{sum_B} p_b \tag{1}$$

(Can you see that these are convex combinations?)

This tells us that there is a point $p \in \text{conv}(S_A) \cap \text{conv}(S_B)$ and thus these convex hulls intersect.

Theorem 4 (Helly). If C_1, C_2, \ldots, C_m are convex objects in \mathbb{R}^d with $m \geq d+2$ and any d+1 of them intersect (in a common point), then all of them intersect (the common intersection is non-empty).

Proof Sketch. We first prove the case m=d+2 ("dummy version"). We have the following steps:

1. Map each object C_i into an intersection which "excludes C_i ":

$$\begin{array}{cccc} C_1 \to & I_1 := C_2 \cap C_3 \cap \cdots \cap C_{d+2} & \to & p_1 \\ C_2 \to & I_2 := C_1 \cap C_3 \cap \cdots \cap C_{d+2} & \to & p_2 \\ & \vdots & & & & \\ C_{d+2} \to & I_{d+2} := C_1 \cap C_2 \cap \cdots \cap C_{d+1} & \to & p_{d+2} \end{array}$$

2. Apply Radon's Lemma to this set of points:

$$\operatorname{conv}(S_A) \cap \operatorname{conv}(S_B) \neq \emptyset$$

which means that there is a point p with

$$p \in \operatorname{conv}(S_A)$$
 and $p \in \operatorname{conv}(S_B)$ (2)

3. We claim that for any $p_a \in S_A$ and $p_b \in S_B$

$$\operatorname{conv}(S_A) \subseteq C_b \quad \text{and} \quad \operatorname{conv}(S_B) \subseteq C_a$$
 (3)

(Exercise)

4. By the previous two items we have

$$p \in \operatorname{conv}(S_A) \subseteq C_b$$
 and $p \in \operatorname{conv}(S_B) \subseteq C_a$. (4)

for every $p_a \in S_A$ and $p_b \in S_B$. Since S_A and S_B are a partition of S, we have that $p \in C_i$ for every i, that is

$$p \in C_1 \cap \cdots \cap C_m$$

Finally the case m > d + 2 can be proved by induction on m (Exercise). \square

2 "Helly-theorems" for graphs

Here is a simple example of a "combinatorial version" of Helly's Theorem:

Example 5. Every three edges of a graph intersect in one node \Longrightarrow All edges intersect in one node.

Note that each triple can be covered by a different node, so it is not obvious that one node can cover all of them: if we have triples of edges

$$T_1, T_2, \ldots$$

we only know that some node n_1 covers T_1 and (a possibly different) node n_2 covers T_2 , and so on...

We can see this as a **vertex cover** problem: (a) For every three edges one vertex is enough to cover them, implies (b) The graph has a vertex cover of size one. The following theorem generalizes the previous example (no proof for now):

Theorem 6 (Erdös-Hajnal-Moon). If every subset of $\binom{s+2}{2}$ edges of a graph can be covered by s nodes, then all edges of the graph can be covered by s nodes.

One can go even further and replace edges (2-subsets) by **hyperedges** of uniform size (r-subsets). The hypergraph is just a collection of subsets of exactly r nodes, also called r-uniform set system:¹

Theorem 7 (Bollobás). If every subfamily of at most $\binom{s+r}{r}$ members of an r-uniform set system can be covered by s nodes, then all members can.

We shall prove Bollobás Theorem in the next lecture. For the moment observe that these "Helly-type" theorems are of the form

$Local Condition \Longrightarrow Global Condition$

3 Exercises

Exercise 2. Prove that the intersection of two convex objects C_1 and C_2 is also convex.

Exercise 3. Prove Theorem 2. Proceed by induction on m adapting the proof given for m = 5:

- 1. Reduce the number of objects to m' = m 1;
- 2. Explain why you can apply the inductive hypothesis to these m' objects;
- 3. Derive from the inductive hypothesis that the original m objects intersect in a common point.

Also explain the base case of the induction.

Exercise 4. Prove Helly's Theorem 4 using Radon's Lemma 3 for the case d = 3 and m = 5 objects. That is, suppose C_1, \ldots, C_5 are convex objects in \mathbb{R}^3 and every 4 of them intersect. Show that they all intersect.

Exercise 5. Prove the result mentioned in Example 5.

More exercises will be in the "Exercise Set 6".

¹An r-uniform set system is a family $\mathcal{F} = \{S_1, \ldots, S_m\}$ where $S_i \subseteq [n]$ and $|S_i| = r$ for all i. This is just a "set of subsets" and we call it **family** just to avoid confusion; any subset of \mathcal{F} gives another family consisting of some of the members of \mathcal{F} .

Exercises (during next exercise class - 29.3.2018)

We shall discuss and solve together the following exercise:

Exercise 6. Consider the following generalization of the statement in Example 5:

Every subset of s + 2 edges (in a given graph) can be covered by s nodes \Longrightarrow **All edges** can be covered by s nodes (the graph has a vertex cover of size s).

This statement is false for all $s \geq 2$. Disprove it.