
Lecture 7
Linear Algebra Methods in

Combinatorics
with Applications to Geometry and CS

From the previous lectures

Local Condition =⇒ Global Condition
(Helly’s Theorem)

And this might be also useful to get some intuition (without proof).

For every subspace U of a vector space V

dim(U) + dim(U⊥) = dim(V )

1 Bollobás Theorem

This is a “Helly-type” theorem for graphs:

Theorem 1 (Erdös-Hajnal-Moon). If every subset of
(
s+2
2

)
edges of a graph

can be covered by s nodes, then all edges of the graph can be covered by s
nodes.
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We generalize vertex cover on graphs by replacing edges (2-subsets) with
hyperedges of uniform size (r-subsets):

A r-uniform set system is a family F = {R1, . . . , Rm} where

Ri ⊆ [n] and |Ri| = r for all i

The family F can be covered by s nodes if there is a subset S ⊆ [n] of size
s that intersects all members of F

Ri ∩ S 6= ∅, for all Ri ∈ F .

Theorem 2 (Bollobás). If every family of at most
(
s+r
r

)
members of an

r-uniform set system can be covered by s nodes, then all members can.

Now we show the “strategy” to prove the theorem. Our theorem can be
“graphically” represented as

F
YES

YES

YES

F
YES YES· · ·

where the promise is that “all small pieces” can be covered by s nodes.
Suppose we cannot cover our family using s nodes (so we need s + 1 or
more). We start removing, one by one, members from the family until “s
nodes are almost enough”:

A family is said critical if

CR1: We need s+ 1 nodes to cover all of its members;

CR2: As soon as we remove any one member from the family, then
s nodes are enough.

F

NO NO
F ′

(critical)
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The idea to prove Bollobás theorem is every critical family must be “small”:

Bollobás theorem - restated

Theorem 3. If R1, . . . , Rm ⊆ [n] are subsets of size r and S1, . . . , Sm ⊆
[n] are subsets of size s such that

Ri ∩ Si = ∅ for all i (1)

Ri ∩ Sj 6= ∅ for all i 6= j (2)

then m ≤
(
r+s
r

)
.

Exercise 1. Show that Theorem 3 implies Theorem 2.
Hint: If we remove R1 from the family, then some S1 of size s will cover the
remaining S2, . . . , Sm.

Here is an example of (non-)critical graphs

not critical

need 2

not critical

need 2

critical

need 2

s = 1

and one of a critical hypergraph (r = 3)

Exercise 2. Find the largest critical graph for s = 1.

Exercise 3. Show that this graph is not critical:
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2 Proof of Bollobás Theorem

A “magic” matrix. We shall use the following

M =



1 1 1 . . . 1
1 2 4 . . . 2r

...
1 i i2 . . . ir

...
1 n n2 . . . nr


(3)

The ith row of this matrix is

mi
4
= (1, i, i2, . . . , ir)

which is a vector in Rr+1. The main feature of this matrix is

Claim 4. Any subset of r + 1 rows of M are linearly independent.

Proof. Appendix A.

Proof of Theorem 3. In the sequel we let A and B be subsets of size r
and s respectively:

A = {a1, . . . , ar} and B = {b1, . . . , bs}

This gives two sets of vectors (the rows of matrix M indexed by these sets):

VA
4
= {ma1 , . . . ,mar} and VB

4
= {mb1 , . . . ,mbs}

Since A has size r the subspace

UA
4
= span(ma1 , . . . ,mar)

has dimension
dim(UA) = r

and therefore there is some “special” vector v∗A which is orthogonal to all
vectors in UA (Exercise!).
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v∗A

UA

Rr+1

Claim 5.

A ∩B = ∅ =⇒ v∗A 6⊥ mbk for all bk ∈ B (4)

A ∩B 6= ∅ =⇒ v∗A ⊥ mbk for some bk ∈ B (5)

Proof. Exercise!

Therefore the polynomial

fB(y)
4
= (y ·mb1)(y ·mb2) · · · (y ·mbs) (6)

satisfies

A ∩B = ∅ =⇒ fB(v∗A) 6= 0 (7)

A ∩B 6= ∅ =⇒ fB(v∗A) = 0 (8)

Consider the matrix (aij) = (fi(vj)) where

fi = fSi
and vj = v∗Rj

and observe that this matrix has nonzero entries in the diagonal, and zero
entries off diagonal. Therefore, it is nonsingular and thus f1, . . . , fm are
linearly independent. To conclude the proof we show that

f1, . . . , fm ∈ span(g1, . . . , gN)

with N =
(
r+s
r

)
and thus m ≤

(
r+s
r

)
from the linear algebra bound.

Note that fB is polynomial in r + 1 variables (all our vectors are in Rr+1)
and that (6) consists of the sum of monomials of the form

λ · yk11 yk22 · · · ykr+1

r+1 where k1 + k2 + · · ·+ kr+1 = s

and the following claim proves N =
(
r+s
r

)
and thus the theorem:
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Claim 6. The number N of integer solutions of the equation

x1 + x2 + · · ·+ x` = s

under the condition xi ≥ 0 for all i is N =
(
s+`−1
`−1

)
Exercise 4. Prove the claim above. (Hint: Consider dividing s identical
sweets among ` children.1 One way is to lay out the sweets on a row and
choose `− 1 breakpoints in between these sweets:

In this way every child gets at least one sweet (xi ≥ 1). Adapt this by
“borrowing” one sweets from every child to allow also xi ≥ 0.

A Vandermonde determinant

This is the so-called Vandermonde determinant:

Vr
4
= det


1 a0 a20 . . . ar0
1 a1 a21 . . . ar1
...
1 ar a2r . . . arr

 . (9)

which is always nonzero for distinct ai’s (proof below). Therefore any subset
of r + 1 rows from M correspond to a matrix of the form above which is
nonsingular.

Step 1: First column goes to 0 by subtracting the first row from every
other row

Vr = det


1 a0 a20 . . . ar0
0 a1 − a0 a21 − a20 . . . ar1 − ar0
...
0 ar − a0 a2r − a20 . . . arr − ar0


1This approach is described in [Juk01, Chapter 1.2].
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Step 2: First row goes to 0 multiply column i − 1 by a0 and subtract
this from the column i

Vr = det


1 0 0 . . . 0
0 a1 − a0 a1(a1 − a0) . . . ar−11 (a1 − a0)
...
0 ar − a0 ar(ar − a0) . . . ar−1r (ar − a0)



= det


1 0 0 . . . 0
0 1 a1 . . . ar−11
...
0 1 ar . . . ar−1r

 · (a1 − a0)(a2 − a0) · · · (ar − a0)

= 1 · det

1 a1 . . . ar−11
...
1 ar . . . ar−1r


︸ ︷︷ ︸

“Vr−1”

·(a1 − a0)(a2 − a0) · · · (ar − a0)

= · · · =
∏

1≤i<j≤n

(aj − ai) 6= 0.

where the last inequality follows from the fact that all ai’s are distinct.

For any field F and any r+1 distinct elements a0, . . . , ar ∈ F, the rows of
the corresponding Vandermonde matrix (9) are linearly independent.
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Exercises

(during next exercise class - 12.4.2018)

We shall discuss and solve together the following exercise:

Exercise 5. Consider the following twofold generalization of Bollobás
Theorem (see Theorem 2 in the lecture notes):

Skew version. If R1, . . . , Rm ⊆ [n] are subsets of size r and S1, . . . , Sm ⊆
[n] are subsets of size s such that

Ri ∩ Si = ∅ for all i (10)

Ri ∩ Sj 6= ∅ for all i < j (11)

then m ≤
(
r+s
r

)
.

Non-uniform version. If subsets R1, . . . , Rm, S1, . . . , Sm ⊆ [n] satisfy

Ri ∩ Si = ∅ for all i (12)

Ri ∩ Sj 6= ∅ for all i 6= j (13)

then
m∑
i=1

1(|Si|+|Ri|
|Ri|

) ≤ 1. (14)

Skew non-uniform version. Relax (13) above as in (11), and still con-
clude that (14) holds.

The first two theorems (Skew version and Non-uniform version) are true.
Your task is to show that the last one is actually false.
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