Lecture 7
Linear Algebra Methods in
Combinatorics

with Applications to Geometry and CS

From the previous lectures

Local Condition = Global Condition
(Helly’s Theorem )
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And this might be also useful to get some intuition (without proof).

For every subspace U of a vector space V'

dim(U) + dim(U*) = dim(V)

1 Bollobas Theorem

This is a “Helly-type” theorem for graphs:

Theorem 1 (Erdos-Hajnal-Moon). If every subset of (532) edges of a graph

can be covered by s nodes, then all edges of the graph can be covered by s
nodes.



We generalize vertex cover on graphs by replacing edges (2-subsets) with
hyperedges of uniform size (r-subsets):

A r-uniform set system is a family F = {Ry, ..., R,,} where

R; C[n] and |R;| = r for all

The family F can be covered by s nodes if there is a subset S C [n] of size
s that intersects all members of F

RiﬂS%(Z), fOl"aHRZ‘G.F.

Theorem 2 (Bollobés). If every family of at most (5+T) members of an

T
r-uniform set system can be covered by s nodes, then all members can.

Now we show the “strategy” to prove the theorem. Our theorem can be
“graphically” represented as
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where the promise is that “all small pieces” can be covered by s nodes.
Suppose we cannot cover our family using s nodes (so we need s + 1 or
more). We start removing, one by one, members from the family until “s
nodes are almost enough”:

A family is said critical if
CR1: We need s + 1 nodes to cover all of its members;

CR2: As soon as we remove any one member from the family, then
s nodes are enough.
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The idea to prove Bollobéas theorem is every critical family must be “small”:

Exercise 1. Show that Theorem 3 implies Theorem 2.
Hint: If we remove Ry from the family, then some Sy of size s will cover the
remaining Sa, ..., Spm.

Here is an example of (non-)critical graphs

not critical not critical critical

need 2 need 2 need 2
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and one of a critical hypergraph (r = 3)
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Exercise 2. Find the largest critical graph for s = 1.
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Exercise 3. Show that this graph is not critical:
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2 Proof of Bollobas Theorem

A “magic” matrix. We shall use the following

11 1 ... 1
1 2 4 ... 2
M=1y, g ir (3)
1 n n? n"
The i row of this matrix is
m; 2 (1,4,i%,...,")

which is a vector in R"*. The main feature of this matrix is
Claim 4. Any subset of r + 1 rows of M are linearly independent.
Proof. Appendix A. m

Proof of Theorem 3. In the sequel we let A and B be subsets of size r
and s respectively:

A={a',...,a"} and B={b',... b°}
This gives two sets of vectors (the rows of matrix M indexed by these sets):
= {mg,...,me} and Vg = {mge, ... s}
Since A has size r the subspace
Ua = span(mgt, ..., Mgr)

has dimension

dzm(UA) =T

and therefore there is some “special” vector v’} which is orthogonal to all
vectors in U, (Exercise!).
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Claim 5.
ANB=0 = vy Lmy foralb*cB (4)
ANB#0 = vy Lmy  for someb* € B (5)
Proof. Exercise! O
Therefore the polynomial
Fo(y) = (- ma)(y - miz) -+ (y - rye) (6)
satisfies
ANB=0 = [fp(v}) #0 (7)
ANB#0 = fa(vy) =0 (8)

Consider the matrix (a;;) = (fi(v;)) where

fi=fs, and v =vp

and observe that this matrix has nonzero entries in the diagonal, and zero
entries off diagonal. Therefore, it is nonsingular and thus fi,..., f,, are
linearly independent. To conclude the proof we show that

Ji,ooos fm € span(gi, ..., gn)

with NV = (rjs) and thus m < (’”jfs) from the linear algebra bound.
Note that fg is polynomial in r + 1 variables (all our vectors are in R" 1)
and that (6) consists of the sum of monomials of the form

>\~y’f1y§2~--yff11 where ki + ko4 -+ kg =5

and the following claim proves N = (Tjs) and thus the theorem:
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Claim 6. The number N of integer solutions of the equation
T1+ 2o+ ---+xp=35
under the condition x; > 0 for alli is N = (sﬁzl)

Exercise 4. Prove the claim above. (Hint: Consider dividing s identical
sweets among £ children.'  One way is to lay out the sweets on a row and
choose £ — 1 breakpoints in between these sweets:

O 0|0|0 O

In this way every child gets at least one sweet (r; > 1). Adapt this by
“borrowing” one sweets from every child to allow also x; > 0.

A Vandermonde determinant

This is the so-called Vandermonde determinant:

1 ay a ... a
2 r
A ay ay ... aq
V, = det (9)
1 a a® ... a.

which is always nonzero for distinct a;’s (proof below). Therefore any subset
of r + 1 rows from M correspond to a matrix of the form above which is
nonsingular.

Step 1: First column goes to 0 by subtracting the first row from every
other row

1 agp a? ag

0 ay—ay a3 —ag ... aj—aj
V, = det

0 a,—ay a>—a3 ... a-—aj

IThis approach is described in [Juk01, Chapter 1.2].



Step 2: First row goes to 0 multiply column ¢ — 1 by ay and subtract
this from the column i

1 0 0 e 0
V. — det 0 a;—ay ai(a; —ag) ... a; *(a; —ap)
0 a,—ay a(a, —ag) ... a Y a, —ap)
10 0 ... 0
1 ay ... a?
= det [ . (a1 — ag)(az — ag) - - - (a, — ap)
01 a, ar!
1 a ... aj!
= 1-det|: (a1 — ap)(az — ag) - - - (a, — ap)
1 a ... at
(6V:7177
1<i<j<n

where the last inequality follows from the fact that all a;’s are distinct.

For any field F and any r+1 distinct elements ag, . . ., a, € F, the rows of
the corresponding Vandermonde matrix (9) are linearly independent.
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Exercises
(during next exercise class - 12.4.2018)

We shall discuss and solve together the following exercise:

Exercise 5. Consider the following twofold generalization of Bollobds
Theorem (see Theorem 2 in the lecture notes):

Skew version. If Ry,..., R, C [n] are subsets of size r and Sy,..., S, C
[n] are subsets of size s such that

RNS;=0  foralli (10)
RiNS;#0  foralli<j (11)
then m < (T:fs).
Non-uniform version. If subsets Ry, ..., Ry, S1,...,Sn C [n] satisfy
R,NS;=0  foralli (12)
RNS;#0  foralli#j (13)
then
; —1 <1 14
=1 |R;|

Skew non-uniform version. Relaz (13) above as in (11), and still con-
clude that (14) holds.

The first two theorems (Skew version and Non-uniform version) are true.
Your task is to show that the last one is actually false.
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