Lecture 9
Linear Algebra Methods in
Combinatorics

with Applications to Geometry and CS

Previous lecture and this lecture

We want to prove this theorem

Theorem 1 (Razborov). Every circuit of depth ¢ (constant) that computes
the magority function using AND, OR, NOT, and PARITY gates with un-
bounded fan-in, must have exponential size (in the number of bits).

The structure of the proof is something like this:

Circuits |~ Polynomials £ Majority
(constant depth) (small degree)

different on

Same o1

“many” inputs “many” inputs




We count on how many inputs the two functions differ:

diff(f.9) =y € {0.1}"] f(y) # 9}

In the previous lecture we have seen this:

| small-degree polynomials # k-threshold function

Lemma 2 (polynomials vs k-threshold). Forn/2 < k < n, every polynomial
of degree 6 < 2k —n — 1 must differ from the threshold function on at least

(Z) inputs.

In this lecture we shall prove the following:

| constant-depth circuits ~ low-degree polynomials

Lemma 3 (circuits vs polynomials). For every depth-d circuit with AND,
OR, NOT and PARITY gates (of unbounded fan-in) there exists a polynomial
p of degree § < r¢ which differs from C on at most |C|2"/2" inputs.

We can already see how these two results imply Theorem 1:

e Take k =n/2 + \/n so that (}) >2"/y/n.

e Set r ~ n'/?d g0 that § < 2k —n — 1.

Then
dif f(p, fx) < dif f(p,C) +dif f(C, fx)

If C' computes the threshold function f; then dif f(C, fr) = 0 and the two
lemmas tell us

n

% <diff(p, fr) < dif f(p,C) < |C\Z—:L

and thus 2
A n

NG
Since any circuit computing majority can be used to compute f; by adding
some “dummy inputs 0”:

Cl =

Depth-d circuits (using AND, OR, NOT and PARITY gates of un-

bounded fan-in) that compute the majority function must have size
2Q(n1/2d)‘




1 Proof of Lemma 3 — probabilistic argument

We shall approximate every bounded depth circuit by some low-degree poly-
nomial. Suppose the circuit we want to approximate is the AND of n variables

and for this purpose we use this (“strange”) polynomial over Fy:

pla)=1+142z)+ -+ (1+z,)

The answer is correct for the input z =1

p(1) =1=p()

Now pick a random subset R of the variables by including the it variable
with probability 1/2 independently from the other variables and look at

1€ER

Exercise 1. Show that, for every input a # 1

Pripr(a) =1] =1/2

Hint: We are in the case a; = 0 for some 1.

Repeat r times

Pick r subsets R = { Ry, ..., R} at random independently as above and look

at
A

Pr(z) = DR, (¥)PR, () - - - Pr,(7)

Then, for every input a
Pr(n(a) # pla)] < 1/ 1)

and the degree of pr is at most r.

Exercise 2. Prove (1).



For every fixed input many polynomials are good

Y

One polynomial is good for many inputs

Our probability space is the set Q2 of all r-tuples R of subsets Ry, ...

variables:
Q={0,1}" x{0,1}" x --- x {0,1}"

r times

For every input a, we define the random variable X, : 2 — R

XQ(R) — { 1 1fﬁR<a) %p(a)

0 otherwise
Consider the sum over all possible inputs a
Y2 Y x,
ae{0,1}n

By linearity of expectation

E[X] =) E[X,] =) Pr[X,=1] <2"/2"

, R, of

A random variable cannot be always strictly larger than its expectation, that

is, there is one w € () such that
X(w) < E[X]

In our case w = R* meaning that

inputs.

For every positive integer r, there exists a polynomial pg+ of degree at
most 7 which differs from the AND of n variables on at most 2"/2"

Lemma 4 (low degree polynomials). Let p(z) 2 p1(2)-pa(x) - - - pm(x), where
D1, - .-, Pm are polynomials of degree at most d. For any positive integer r,

there exists a polynomial p such that
1. The degree of p is at most rd
2. p differs from p on at most 2™ /2" inputs.

Proof. Exercise!!.



1.1 Approximate an entire circuit — Lemma 3

| Approximating the AND gate is not enough |

We first show that one cannot approximate an entire circuit by approximating
“locally” every single gate. The output of an AND gate can be also seen as
the polynomial p(y) = y; - - - ym of its “direct inputs in the circuit”:

L1

v

M
T

We have seen above how to approximate a single AND gate, which means
that there is a polynomial p which differs from v - - -y, on at most 2™ /2"
values. We use this result to approximate an entire circuit.

I,
1]

| Lemma 4 = Lemma 3 |

Each gate outputs some “intermediate” function g;(z1,...,x,) of the input
of the circuit, and the output of the circuit is the output of the “last” gate

C(x) = gs(x)

where s = |C] is the number of gates. If we replace the i function g;(z1, ..., x,)
by some other function g;(xy,...,x,), then the “new circuit” C differs from
the previous one on at most dif f(g;, §;) inputs. This argument can be used
to derive Lemma 3 from Lemma 4 (Exercise!!).
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