
Lecture 9
Linear Algebra Methods in

Combinatorics
with Applications to Geometry and CS

Previous lecture and this lecture

We want to prove this theorem

Theorem 1 (Razborov). Every circuit of depth c (constant) that computes
the majority function using AND, OR, NOT, and PARITY gates with un-
bounded fan-in, must have exponential size (in the number of bits).

The structure of the proof is something like this:

Circuits Polynomials Majority
(constant depth) (small degree)

≈ 6=

same on
“many” inputs

different on
“many” inputs
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We count on how many inputs the two functions differ:

diff(f, g)
4
= |{y ∈ {0, 1}n| f(y) 6= g(y)}|

In the previous lecture we have seen this:

small-degree polynomials 6= k-threshold function

Lemma 2 (polynomials vs k-threshold). For n/2 ≤ k ≤ n, every polynomial
of degree δ ≤ 2k − n − 1 must differ from the threshold function on at least(
n
k

)
inputs.

In this lecture we shall prove the following:

constant-depth circuits ≈ low-degree polynomials

Lemma 3 (circuits vs polynomials). For every depth-d circuit with AND,
OR, NOT and PARITY gates (of unbounded fan-in) there exists a polynomial
p of degree δ ≤ rd which differs from C on at most |C|2n/2r inputs.

We can already see how these two results imply Theorem 1:

• Take k = n/2 +
√
n so that

(
n
k

)
≥ 2n/

√
n.

• Set r ≈ n1/2d so that δ ≤ 2k − n− 1.

Then
diff(p, fk) ≤ diff(p, C) + diff(C, fk)

If C computes the threshold function fk then diff(C, fk) = 0 and the two
lemmas tell us

2n

√
n
≤ diff(p, fk) ≤ diff(p, C) ≤ |C|2

n

2r

and thus

|C| ≥ 2r

√
n
≈ 2n1/2d

√
n

Since any circuit computing majority can be used to compute fk by adding
some “dummy inputs 0”:

Depth-d circuits (using AND, OR, NOT and PARITY gates of un-
bounded fan-in) that compute the majority function must have size

2Ω(n1/2d).
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1 Proof of Lemma 3 – probabilistic argument

We shall approximate every bounded depth circuit by some low-degree poly-
nomial. Suppose the circuit we want to approximate is the AND of n variables

p(x) = x1 · · ·xn

and for this purpose we use this (“strange”) polynomial over F2:

p̂(x) = 1 + (1 + x1) + · · ·+ (1 + xn)

The answer is correct for the input x = 1

p(1) = 1 = p̂(1)

Now pick a random subset R of the variables by including the ith variable
with probability 1/2 independently from the other variables and look at

p̂R
4
= 1 +

∑
i∈R

(1 + xi)

Exercise 1. Show that, for every input a 6= 1

Pr
R

[p̂R(a) = 1] = 1/2

Hint: We are in the case ai = 0 for some i.

Repeat r times

Pick r subsets R = {R1, . . . , Rr} at random independently as above and look
at

p̂R(x)
4
= p̂R1(x)p̂R2(x) · · · p̂Rr(x)

Then, for every input a

Pr
R

[p̂R(a) 6= p(a)] ≤ 1/2r (1)

and the degree of p̂R is at most r.

Exercise 2. Prove (1).
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For every fixed input many polynomials are good
⇓

One polynomial is good for many inputs

Our probability space is the set Ω of all r-tuples R of subsets R1, . . . , Rr of
variables:

Ω = {0, 1}n × {0, 1}n × · · · × {0, 1}n︸ ︷︷ ︸
r times

For every input a, we define the random variable Xa : Ω→ R

Xa(R) =

{
1 if p̂R(a) 6= p(a)
0 otherwise

Consider the sum over all possible inputs a

X
4
=

∑
a∈{0,1}n

Xa

By linearity of expectation

E[X] =
∑
a

E[Xa] =
∑
a

Pr[Xa = 1] ≤ 2n/2r

A random variable cannot be always strictly larger than its expectation, that
is, there is one ω ∈ Ω such that

X(ω) ≤ E[X]

In our case ω = R∗ meaning that

For every positive integer r, there exists a polynomial p̂R∗ of degree at
most r which differs from the AND of n variables on at most 2n/2r

inputs.

Lemma 4 (low degree polynomials). Let p(x)
4
= p1(x)·p2(x) · · · pm(x), where

p1, . . . , pm are polynomials of degree at most d. For any positive integer r,
there exists a polynomial p̂ such that

1. The degree of p̂ is at most rd

2. p̂ differs from p on at most 2n/2r inputs.

Proof. Exercise!!.
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1.1 Approximate an entire circuit – Lemma 3

Approximating the AND gate is not enough

We first show that one cannot approximate an entire circuit by approximating
“locally” every single gate. The output of an AND gate can be also seen as
the polynomial p(y) = y1 · · · ym of its “direct inputs in the circuit”:

∧

xn· · ·x1

C(x1, . . . , xn)

∧y′1 y′m

y1 ym

We have seen above how to approximate a single AND gate, which means
that there is a polynomial p̂ which differs from y1 · · · ym on at most 2m/2r

values. We use this result to approximate an entire circuit.

Lemma 4 ⇒ Lemma 3

Each gate outputs some “intermediate” function gi(x1, . . . , xn) of the input
of the circuit, and the output of the circuit is the output of the “last” gate

C(x) = gs(x)

where s = |C| is the number of gates. If we replace the ith function gi(x1, . . . , xn)
by some other function ĝi(x1, . . . , xn), then the “new circuit” Ĉ differs from
the previous one on at most diff(gi, ĝi) inputs. This argument can be used
to derive Lemma 3 from Lemma 4 (Exercise!!).
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