Exercise 1. Let p be a prime, and n and k are any two positive integers. Suppose $S_1, \ldots, S_m \subseteq [n]$ satisfy

\[|S_i| \neq 0 \mod p^k \quad \text{for every } i \quad (1) \]
\[|S_i \cap S_j| = 0 \mod p^k \quad \text{for every } i \neq j. \quad (2) \]

Prove that $m \leq n$.

Exercise 2. Let n be a positive integer. Suppose $R_1, \ldots, R_m, B_1, \ldots, B_m \subseteq [n]$ satisfy

\[|R_i \cap B_i| \neq 0 \mod 4 \quad \text{for every } i \quad (3) \]
\[|R_i \cap B_j| = 0 \mod 4 \quad \text{for every } i \neq j. \quad (4) \]

Prove that $m \leq n$.

Exercise 3. Let p be a prime, and n and k are any two positive integers. Suppose $R_1, \ldots, R_m, B_1, \ldots, B_m \subseteq [n]$ satisfy

\[|R_i \cap B_i| \neq 0 \mod p^k \quad \text{for every } i \quad (5) \]
\[|R_i \cap B_j| = 0 \mod p^k \quad \text{for every } i \neq j. \quad (6) \]

Prove that $m \leq n$. Prove the same if the condition 6 becomes $|R_i \cap B_j| = 0 \mod p^k$ for every $i < j$.
Exercise 4. Let \(k_1, \ldots, k_l \) be positive integers and suppose that \(S_1, \ldots, S_m \subseteq [n] \) satisfy

\[
|S_i| \neq 0 \mod c \quad \text{for every } i \\
|S_i \cap S_j| = 0 \mod c \quad \text{for every } i \neq j
\]

where \(c = p_1^{k_1} p_2^{k_2} \cdots p_l^{k_l} \) and \(p_1, \ldots, p_l \) are prime numbers. Prove that \(m \leq h_c \cdot n \), where \(h_c \) is a constant that depends on \(c \) only.

Exercise 5. Grolmusz (2000) proved that it is possible to construct a family of \(m \geq 2^{\alpha \log^2 n / \log \log n} \) subsets \(S_1, \ldots S_m \subseteq [n] \) such that

\[
|S_i| \neq 0 \mod 6 \quad \text{for every } i \\
|S_i \cap S_j| = 0 \mod 6 \quad \text{for every } i \neq j
\]

Use his construction to obtain \(t \)-Ramsey graphs of size superpolynomial in \(t \). Explain the construction, i.e., which are the vertices, which are the edges, and prove that this is indeed a \(t \)-Ramsey graph.

Exercise 6. Suppose that \(m \) points \(s_1, \ldots, s_m \in \mathbb{R}^n \) are such that

\[
d(s_i, s_j) = 1 \quad \text{for all } i \neq j
\]

where \(d() \) is the Euclidean distance.

- Prove that \(m \leq n + 2 \).
- Improve the bound to \(m \leq n + 1 \) and show that this bound is tight.

Exercise 7. Prove that, for any \(n \) there exists \(\epsilon > 0 \) such that the following holds. If \(m \) points \(s_1, \ldots, s_m \in \mathbb{R}^n \) are such that

\[
d(s_i, s_j) \in [1 - \epsilon, 1 + \epsilon] \quad \text{for all } i \neq j
\]

where \(d() \) is the Euclidean distance, then \(m \leq O(n) \).

Exercise 8. Suppose that \(2m \) points \(a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}^n \) are such that, for some \(\delta_1 \) and \(\delta_2 \), they satisfy

\[
d(a_i, b_j) \in \{\delta_1, \delta_2\} \quad \text{if and only if } i < j
\]

where \(d() \) is the Euclidean distance. Prove that \(m \leq O(n^2) \).
Exercise 9. Prove that for every positive integer p there exists a constant $c(p)$ such that the following holds. If m points $s_1, \ldots, s_m \in \mathbb{R}^n$ satisfy

$$||s_i - s_j||_p = 1 \quad \text{for all } i \neq j,$$

then $m \leq c(p)n$ where $||x||_p$ is the usual L_p-norm.

Exercise 10. Suppose m complete bipartite graphs cover each edge of the complete graph K_n an odd number of times. Provide a detailed proof that $m \geq (n-1)/2$.

Exercise 11. Consider a set of n vectors $V = \{v_1, \ldots, v_n\}$, where each vector v_i is in \mathbb{R}^{r+1} and $n \geq 2r$. For any subset $A \subseteq [n]$ of size r we define the following mapping:

$$A \mapsto V_A \triangleq \{v_i \mid i \in A\}$$

The set V satisfies the following condition: For every A as above there is some $v_A^* \in \mathbb{R}^{r+1}$ such that

1. The vector v_A^* is orthogonal to every vector in V_A.
2. If A and B do not intersect, then v_A^* is not orthogonal to any of the vectors in V_B (here $B \subseteq [n]$ is also of size r).

Prove that V must be “in general position”, that is, any subset of $r+1$ vectors from V are linearly independent.

Exercise 12. We have c colors. Give an explicit coloring of the complete graph with $n = \binom{t^2}{2c-1}$ nodes where each node corresponds to a subset of $[t]$ of size $2c - 1$. Color the edges (S_i, S_j) according to the size of the intersection $|S_i \cap S_j|$ using at most c colors so that no monochromatic component of size $t+1$ exists. Describe the coloring rule and prove the non-existence of such components.

Exercise 13. The following theorem is called Non-uniform-RW theorem.

Let D be a set of s integers and the subsets $S_1, \ldots, S_m \subseteq [n]$ are D-intersecting i.e.

$$|S_i \cap S_j| \in D \quad \text{for every } i \neq j.$$ \hfill (14)

Then the maximum number $m = m(n)$ of such subsets is $m(n) \leq \sum_{i=0}^{s} \binom{n}{i}$.
Please, adapt the proof of mod-p-RW theorem to prove the theorem above and explain why the same polynomial definition as in the proof of mod-p-RW theorem can not be used.

Exercise 14. The following theorem is called Non-uniform-Bolobas theorem.

Let \(\{A_1, \ldots, A_m\} \) and \(\{B_1, \ldots, B_m\} \) are set families such that

\[
A_i \cap B_i = \emptyset \quad i = j
\]

\[
A_i \cap B_i \neq \emptyset \quad i \neq j
\]

then

\[
\sum_{i=1}^{m} \frac{1}{(|A_i|+|B_i|)} \leq 1
\]

Prove that the theorem above becomes false if we change the condition 16 to \(A_i \cap B_i \neq \emptyset \ i < j \).