Exercise Set 10 – HS12
(Linear Algebra Methods in Combinatorics)

These exercises will be graded. Please return the solutions at the beginning of next lecture – 5.12.2012. You can send solutions also by email (same deadline).

Two exercises on circuit complexity.

Exercise 1 (2 Points). In this exercise we consider these depth-2 “XOR-of-OR” circuits:

\[
\begin{array}{c}
\begin{array}{c}
\lor \\
\vdots \\
\lor \\
\oplus
\end{array}
\end{array}
\]

where each of the OR gates is connected to a subset of the input variables (no variable is negated) and the output is the XOR of all these gates. We say that such a circuit computes a graph \(G = (V, E) \) if \(G \) has \(n \) nodes and its edges satisfy

\[
E = \{(u, v) : C(e_{u,v}) = 1\}
\]

where

\[
e_{u,v} = (0, \ldots, 0, 1, 0, \ldots, 0, 1, 0, \ldots, 0)
\]

is the input vector in which only variables \(x_u \) and \(x_v \) are set to 1.

Prove that any such XOR-of-OR circuit computing a graph \(G \) must have size \(s + 1 \geq \text{rank}_{\mathbb{F}_2}(A_G) \), where \(A_G \) is the adjacency matrix of \(G \) (recall that \(s \) is the number of OR gates).

Hint: Use the result of Exercise 4 in Lecture 9.

Exercise 2 (3 Points). Explicit constructions of bipartite Ramsey graphs (see below) are also difficult to obtain. A probabilistic argument shows that such graphs can be obtained from a (suitable) subset \(S \subseteq \{0,1\}^k \) as follows: Take two copies of \(S \) as the two sets of vertices of the bipartite graph
and add an edge between \(u \) (on the left side) and \(v \) (on the right side) if and only if \(\langle u, v \rangle = 1 \) over \(\mathbb{F}_2 \). There is an \(S \) for which this graph \(G_S \) has \(n = \Omega(2^{k/2}) \) nodes and the complete bipartite graph \(K_{k,k} \) is not contained in the graph \(G_S \) nor in its bipartite complement\(^2\) – the graph \(G_S \) is said bipartite Ramsey in this case.

Prove that there exist bipartite Ramsey graphs that can be computed by a depth-2 XOR-of-OR circuit of size logarithmic in the number of nodes of the graph (describe the circuit and prove this statement).

Note: The formal definition of “bipartite Ramsey” is not crucial for this exercise.

Three exercises on “Euclidean coloring” problem in this lecture.

Exercise 3 (1 Point). Consider the following strategy to prove a lower bound on the number of colors \(m(n) \) needed to color \(\mathbb{R}^n \). There exists some unit-distance graph \(G \) in \(\mathbb{R}^n \) which has a large clique, say \(K \), and therefore \(m(n) \geq \chi(G) \geq |K| \). Prove that the best lower bound that is possible to obtain with this approach is \(m(n) \geq n + 1 \).

Exercise 4 (1 Point). Suppose we can cover the whole space \(\mathbb{R}^n \) using a set of open balls, \(\mathcal{B} = \{ B_1, B_2, \ldots, B_i, \ldots \} \), of radius \(1/2 \). We construct a graph \(G \) whose vertices are the centers of these balls, \(\mathcal{C} = \{ c_1, c_2, \ldots, c_i, \ldots \} \), and an edge \((c_i, c_j) \) exists if and only if the distance \(d(c_i, c_j) \leq 2 \). Prove that, if you can color \(G \) with \(c \) colors, then you can color the whole space \(\mathbb{R}^n \) with \(c \) colors (i.e., \(m(n) \leq \chi(G) \)).

Hint: Extend the coloring of the centers to the whole space. Prove that in this way two points \(p \) and \(p' \) at distance 1 cannot get the same color.

\(^2\)For any bipartite graph \(G = (L \cup R, E) \), its bipartite complement is the bipartite graph \(\bar{G} = (L \cup R, \bar{E}) \) where \(\bar{E} = \{(u, v) \notin E | u \in L \land v \in R \} \).
Exercise 5 (1 Point). Show that the graph G in Exercise 4 can be colored with 9^n colors if the set $C = \{c_1, c_2, \ldots, c_i, \ldots\}$ satisfies $d(c_i, c_j) \geq 1/2$ for all distinct $c_i, c_j \in C$.

Hint: Use the fact that a ball of radius $9/4$ cannot contain more than 9^n balls of radius $1/4$.