Exercise Set 2 – HS12
(Linear Algebra Methods in Combinatorics)

These exercises will be graded and each exercise counts 1 point. Please return the solutions at the beginning of next lecture – 10.10.2012 – or send them by email to paolo.penna@inf.ethz.ch (same deadline).

Exercise 1 (Skew Bipartite Oddtown). Suppose there are \(m \) red clubs \(R_1, \ldots, R_m \subseteq [n] \) and \(m \) blue clubs \(B_1, \ldots, B_m \subseteq [n] \) in a town of \(n \) citizens. Assume that these clubs satisfy the following rules:

\[
| R_i \cap B_i | \quad \text{is odd for all } i \quad (16)
\]

\[
| R_i \cap B_j | \quad \text{is even for all } i > j \quad (17)
\]

Prove that (1) \(m \leq n \), (2) clubs of the same color must be distinct (i.e., if \(i \neq j \) then \(R_i \neq R_j \) and \(B_i \neq B_j \)), and (3) find a construction of \(m = n \) for red and blue clubs satisfying the rules (16)-(17).

Exercise 2 (Mod-c-Town). Consider a composite number \(c = p_1^{k_1} p_2^{k_2} \cdots p_l^{k_l} \), where \(p_1, \ldots, p_l \) are prime numbers and \(k_1, \ldots, k_l \) are nonnegative integers. Suppose that \(S_1, \ldots, S_m \subseteq [n] \) satisfy

\[
| S_i | \neq 0 \mod c \quad \text{for every } i \quad (18)
\]

\[
| S_i \cap S_j | = 0 \mod c \quad \text{for every } i \neq j \quad (19)
\]

Prove that \(m \leq 1 \cdot n \).

Exercise 3 (Approximate Two-Distance Sets). In the lecture we have proven that the maximum number of points in a two-distance set in \(\mathbb{R}^n \) is \(m(n) \leq N \) with \(N = 1 + 2n + 2n^2 \). Prove the same upper bound for the following variant of the problem in which distances must be approximately equal to \(\delta_1 \) or to \(\delta_2 > \delta_1 \), according to some “error parameter” \(\epsilon > 0 \). The distances between the points \(s_1, \ldots, s_m \in \mathbb{R}^n \) must satisfy

\[
d(s_i, s_j) \in [\delta_1 - \epsilon, \delta_1 + \epsilon] \cup [\delta_2 - \epsilon, \delta_2 + \epsilon] \quad \text{for every } i \neq j \quad (20)
\]

for some \(\delta_1, \delta_2 > \delta_1 \). Prove that \(m \leq N \), where \(N = 1 + 2n + 2n^2 \), as long as \(\epsilon \) is “sufficiently small”. That is, find an explicit \(\epsilon_0 > 0 \), which depends on \(\delta_1, \delta_2 \) and \(n \), such that \(m \leq N \) for all \(\epsilon < \epsilon_0 \). (Note: to make calculations simpler, assume \(d() \) to be the square of the Euclidean distance.)
Exercise 4 (One-Distance Sets). A regular simplex is a set of \(n + 1 \) points in \(\mathbb{R}^n \) such that any two points are at distance 1. Prove that no set with this property can have more points. That is, for any \(n \), if \(m \) points \(s_1, \ldots, s_m \in \mathbb{R}^n \) are such that

\[
d(s_i, s_j) = 1 \quad \text{for all } i \neq j
\]

where \(d() \) is the Euclidean distance, then \(m \leq n + 1 \). If you cannot prove this bound, try to prove the simpler bound \(m \leq n + 2 \).

Exercise 5 (One-Distance Sets with \(L_p \)-Norm). Prove that for every positive even integer \(p \) there exists a constant \(c(p) \) such that the following holds. If \(m \) points \(s_1, \ldots, s_m \in \mathbb{R}^n \) satisfy

\[
||s_i - s_j||_p = 1 \quad \text{for all } i \neq j,
\]

then \(m \leq n^{c(p)} \) where \(||x||_p = (\sum_k |x_k|^p)^{1/p} \) is the usual \(L_p \)-norm.