The next three exercises are on the proof of Razborov lower bound.

Exercise 1. We know that for every m there is a polynomial p_\land which differs from the AND of m bits on at most $2^m / 2^r$ of the possible 0/1-inputs. Consider the following “local procedure” to approximate a given circuit C with a low-degree polynomial. For each AND gate consider its “direct inputs in the circuit” (left figure below):

```
\begin{array}{c}
y_1' \quad \cdots \quad y_m' \\
\land \\
\downarrow \\
C(x_1, \ldots, x_n)
\end{array}
```

Replace each gate by the polynomial p_\land on the “direct inputs” of the gate (see right figure above). Show that there is a circuit \hat{C} for which the resulting polynomial \hat{C} differs from C on more than $|C| 2^m / 2^r$ inputs.

Exercise 2. Prove Lemma 4 in the lecture notes by adapting the idea for the special case $p = x_1 \cdots x_m$.

Exercise 3. Derive Lemma 3 from Lemma 4 (see lecture notes).

The next two exercises on depth-2 circuits will help for future exercises.

Exercise 4. Consider this type of depth-2 circuits:
where each of the OR gates is connected to a subset of the input variables (no variable is negated) and the output is the XOR of all these gates. For any \(u \) and \(v \), let \(e_{u,v} \) denote the input in which only variables \(x_u \) and \(x_v \) are set to 1:

\[
ed_{u,v} = (0, \ldots, 0, 1, 0, \ldots, 0, 1, 0, \ldots, 0)
\]

Consider the graph over \(n \) nodes whose edges are

\[
E = \{(u, v) : C(e_{u,v}) = 1\}
\]

Show that

\[
(u, v) \in E \iff s - |D_u \cap D_v| = 1 \mod 2
\]

where \(s \) is the number of OR gates and \(D_u \) is the set of OR gates that is not connected to variable \(x_u \).

Exercise 5. Also in this exercise we restrict our attention to depth-2 circuits \(C \) of the type described in Exercise 4 ("XOR-of-OR circuits"). Consider the following \(n \times n \) bipartite graph \(G = (V_1 \cup V_2, E) \). The vertices of each side \(V_i \) correspond to all 0/1-vectors of length \(k \) (so \(n = |V_1| = |V_2| = 2^k \)). Two vertices \(u \in V_1 \) and \(v \in V_2 \) are adjacent if and only if \(\langle u, v \rangle = 1 \) over \(\mathbb{F}_2 \). Show that there is a depth-2 “XOR-of-OR” circuit \(C \) that computes the edges of this graph, that is

\[
E = \{(u, v) : C(e_{u,v}) = 1\}
\]

and that uses \(O(\log n) \) OR gates.