\LaTeX introduction

Sandro Montanari
sandro.montanari@inf.ethz.ch

ETH Zurich

September 16, 2011
Outline

1. Why use \LaTeX?

2. Basics

3. Typesetting Maths and Tables

4. Graphics

5. \LaTeX Editors
Outline

1. Why use \LaTeX?
2. Basics
3. Typesetting Maths and Tables
4. Graphics
5. \LaTeX Editors
Why use \LaTeX?

What is \LaTeX?

From Wikipedia

\LaTeX is a document markup language and document preparation system for the \TeX typesetting program

layout design: the authors write the contents, \LaTeX decides how to put it on a page.

Some examples...

\[x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}} \]
Pros

- professional layouts and easy typesetting of mathematical formulas,
Pros

- professional layouts and easy typesetting of mathematical formulas,

- user’s only concern is the logical structure, not the appearance of a document (*WYSIWYM* vs *WYSIWYG*),
Pros

- professional layouts and easy typesetting of mathematical formulas,
- user’s only concern is the logical structure, not the appearance of a document (WYSIWYM vs WYSIWYG),
- complex structures like footnotes, table of contents, references can be generated easily,
Pros

- professional layouts and easy typesetting of mathematical formulas,

- user’s only concern is the logical structure, not the appearance of a document (WYSIWYM vs WYSIWYG),

- complex structures like footnotes, table of contents, references can be generated easily,

- many add-on packages,
Pros

- professional layouts and easy typesetting of mathematical formulas,
- user’s only concern is the logical structure, not the appearance of a document (WYSIWYM vs WYSIWYG),
- complex structures like footnotes, table of contents, references can be generated easily,
- many add-on packages,
- highly portable and free. You can create documents from tex files in any platform,
- ...
Cons

Learning to use \LaTeX\ properly requires time...every time you need to do something new, you have to search the most appropriate solution.
Outline

1. Why use \LaTeX?

2. Basics

3. Typesetting Maths and Tables

4. Graphics

5. \LaTeX Editors
WYSIWYM

There are two ways to implement WYSIWYM systems,

Interpreted write a document containing markup commands, and see it using an interpreter (.html files),

```html
<!DOCTYPE html>
<html>
  <head>
    <title>Hello HTML</title>
  </head>
  <body>
    <p>Hello World!</p>
  </body>
</html>
```

Compiled write a document containing markup commands, and use a compiler to obtain a file that is in readable format (\LaTeX).

```
\$ latex example.tex \rightarrow \text{DVI}
\$ pdflatex example.tex \rightarrow \text{PDF}
```
A Minimal \LaTeX\ File

```
documentclass{article}
\begin{document}
Small is beautiful.
\end{document}
```

documentclass specifies the sort of document. Optional parameters customize the behavior of the standard classes.

```
documentclass[11pt,twoside,a4paper]{article}
```

The text that is between \texttt{begin} and \texttt{end} is the body of the document. The title of the whole document is generated by \texttt{\maketitle}. The content of the title has to be specified by the commands \texttt{\title{..}}, \texttt{\author{..}}, and optionally \texttt{\date{..}}.
Document Structure

Paragraphs are created using empty lines between text parts.

Document should be organized in chapters, sections, and subsections, using the special commands

\section{...}
\subsection{...}
\subsubsection{...}
\paragraph{...}
\subparagraph{...}
commands starts with a \, some requires parameters between \{\}, and optional parameters between [],

spaces consecutive spaces are treated as one space,

specials # $ % ^ & _ { } ~ \ are reserved, you can write them as commands, \# \$ \% \^{} \& _ \{ \} \~{} \textbackslash,

comments when \LaTeX\ encounters a %, it ignores the rest of the present line,

packages .sty files containing additional packages can be included with the command \usepackage{file.sty} after the documentclass header.
Outline

1. Why use LaTeX?
2. Basics
3. Typesetting Maths and Tables
4. Graphics
5. LaTeX Editors
The **amsmath** Package

To typeset advanced mathematics, use the package **amsmath**.

- **text style** within paragraphs, $a^2 + b^2 = c^2$ becomes $a^2 + b^2 = c^2$
- **display style** separate from paragraphs, \(a^2 + b^2 = c^2\) becomes

\[a^2 + b^2 = c^2\]
Blocks of a Mathematical Formula

Greek

\[\lambda, \xi, \pi, \theta, \mu, \Phi, \Omega, \Delta \]

Exponents

\[p_{ij} \quad m_{Knuth} \quad \sum_{k=1}^{3} k \quad [5pt] \]
\[a^x + y \quad \neq \quad a^{x+y} \quad e^{x^2} \neq e^{x^2} \]

Square Root

\[\sqrt{x} \iff x^{1/2} \quad \sqrt{2} \quad \sqrt{x^2 + y} \quad \sqrt{[x^2 + y^2]} \]

Variables

\[f(x) = x^2 \quad \hat{XY} \quad \bar{x}_0 \quad \bar{x}_0 \]
Theorems, Lemmas and Definitions

Declare them in the preamble by using the command

\newtheorem{name}{longname}

\textit{name} argument is a short keyword to identify the “theorem”. \textit{longname} is the actual name of the “theorem”, which will be printed in the final document.

\begin{name}[text]
This is my interesting theorem
\end{name}

\begin{proof}
Trivial, use
\begin{equation*}
E=mc^2.
\end{equation*}
\end{proof}

\textbf{LaTeX 1 (sample theorem).} This is my interesting theorem

Proof. Trivial, use

\begin{equation*}
E = mc^2.
\end{equation*}
Tables

The **tabular** environment to typeset tables. \LaTeX{} determines the width of the columns automatically, and does not wrap the text.

\begin{tabular}{|r|l|}
\hline
7C0 & hexadecimal \\
3700 & octal \\
1111000000 & binary \\
\hline
\end{tabular}

\begin{tabular}{|p{4.7cm}|}
\hline
Welcome to Boxy’s paragraph. We sincerely hope you’ll all enjoy the show. \\
\hline
\end{tabular}

- \textit{r, l, c} respectively right, left, centered alignment of text,
- | a vertical line,
- \textit{p{..}} fixed width column with justified text.
Outline

1. Why use \LaTeX?
2. Basics
3. Typesetting Maths and Tables
4. \LaTeX\ Editors
Importing Graphics

Use the `graphicx` package,

\usepackage{graphicx}

then the command

\includegraphics[key=...]{file}

to include the `file` in your document. Optionals are

- `width` scale graphic to the specified width
- `height` scale graphic to the specified height
- `angle` rotate graphic counterclockwise
- `scale` scale graphic

Note

Using the `latex` compiler you can only import .eps graphics. Using `pdflatex`, you can import also .jpg, .png, and .pdf
You can also draw in using the `picture` environment,

\begin{tikzpicture}[scale=0.8]
 \tikzstyle{v}=[circle, minimum size=2mm, inner sep=0pt, draw]
 \foreach \i in {1,...,8}
 \foreach \j in {1,...,3}
 \node[v]
 (G-\i-\j) at (\i,\j) {};
 \foreach \i in {1,...,8}
 \foreach \j/\o in {1/2,2/3}
 \draw[->]
 (G-\i-\j) -- (G-\i-\o);
 \foreach \i/\n in
 {1/2,2/3,3/4,4/5,5/6,6/7,7/8}
 \foreach \j/\o in {1/2,2/3} {
 \draw[->] (G-\i-\j) -- (G-\n-\o);
 \draw[->] (G-\n-\j) -- (G-\i-\o);
 }
\end{tikzpicture}
Outline

1 Why use \LaTeX?

2 Basics

3 Typesetting Maths and Tables

4 Graphics

5 \LaTeX Editors
Dedicated \LaTeX\ Editors

More useful than plain text editors, usually have autocompletion, spell and error checking, and handy macros.

Kile for the KDE http://kile.sourceforge.net/

Gedit for Gnome

http://www.michaels-website.de/gedit-latex-plugin/

TEXnicCenter windows http://www.texniccenter.org/

TEXShop Mac Os X http://pages.uoregon.edu/koch/texshop/

Texmaker cross-platform http://www.xm1math.net/texmaker/
WYSIWYG Editors

Compile and show the resulting output of \LaTeX{} commands.

\texttt{LyX} cross-platform \url{http://www.lyx.org/}

\texttt{BaKoMaTex} windows \url{http://bakoma-tex.com/menu/about.php}