Algorithmic Game Theory HS12
Graded exercise sheet 11

Regulations:

- There will be a total of four graded exercise sheets during this semester, this is one of them.
- Your solutions to these exercise sheets will be graded. The three highest out of your four achieved grades will account for 10% of your final grade for the course each (so 30% of the grade in total).
- You are expected to solve them carefully and then write a nice complete exposition of your solution using LaTeX. The appearance of your solution will also be part of the grade. (In particular this means that you are expected to use a spell-checker!)
- You are welcome to discuss the tasks with your fellow students, but we expect each of you to hand in your own individual write-up.
- The deadline for handing in the solution is on Monday December 17, until 15:15. Please send your PDF via email to matus.mihalak@inf.ethz.ch, or sandro.montanari@inf.ethz.ch. Your file should have the name <Surname>.pdf, where <Surname> should be exchanged by your family name.

EXERCISE 11.1: (5 points)
Consider an auction with \(k \) identical goods and \(n \) players. Each player wants to have any of these goods, and exactly one. The value of player \(i \), \(i = 1, 2, \ldots, n \), for winning (i.e., getting one of the goods) is \(v_i \), a private information of the player.

Decide, whether the following auctions for the described situation are truthful:

a) Run \(k \) Vickrey auctions (also known as the second-price auction), one after another, for one single good.

b) Ask the players for their valuations, receive bids \(b_i \) from the players (expressing their valuation), sort the players according to the bids (highest bid first), and assign the first \(k \) bidders one good each.
 i) Charge each winner \(i \) (one of the first \(k \) bidders) the \((i + 1)\)-th bid (in the sorted order).
 ii) Charge each winner \(i \) (one of the first \(k \) bidders) the \((k + 1)\)-th bid (in the sorted order).

EXERCISE 11.2: (5 points)
In this exercise we consider combinatorial auctions with single-minded bidders. Recall that in such an auction every player is only interested in getting the goods in \(S_i \subseteq U \) (where \(U \) is the set of goods). The player \(i \) values this bundle \(S_i \) with \(v_i \in \mathbb{R}^+ \). Both \(S_i \) and \(v_i \) are the private information of player \(i \). Every player \(i \) submits a bid \((B_i, b_i)\) to the auction, expressing the desire to get the bundle \(B_i \) and that the player values it with \(b_i \).
Consider the following modification of the LOS mechanism:

a) the outcome (i.e., the decision of the mechanism about which player is granted its bundle) remains unchanged;

b) the price that any winner i pays is $\sqrt{|B_i|} \cdot \frac{b_i}{\sqrt{|B_j|}}$, where $j > i$ is the first j after i (in the order given by the descending values of $b_k/\sqrt{|B_k|}$, $k = 1, \ldots, n$) for which $B_i \cap B_j \neq \emptyset$. The payment will be zero if no such j exists.

Is this mechanism truthful?

EXERCISE 11.3: (4 points)
Recall the problem of scheduling m jobs on n machines, where every job j has a load (size) l_j, and every machine i needs t_i time to process one unit of load. The machines are the players and t_i is the private information of player i. Every player i submits to the mechanism value b_i with which it claims that the machine i needs time b_i to process one unit of load. The mechanism then assigns to every machine i a set of jobs J_i such that J_1, J_2, \ldots, J_n forms a partition of the jobs $\{1, 2, \ldots, m\}$, and decides for every player i the amount of money p_i the player i gets. The load (or work) of machine i in this assignment is $W_i(b, b_{-i}) = \sum_{j \in J_i} l_j$. The expression $t_i \cdot W_i(b, b_{-i})$ is the cost to machine i.

Consider the following greedy strategy for assigning jobs to machines: Sort the jobs such that $l_j \geq l_{j+1}$; go through the jobs in the resulting order, and assign iteratively job j to a machine i as specified in the following: Let $W_i^{(j-1)}$ denote the load of machine i after the first $j-1$ jobs were assigned; assign job j to machine i which minimizes the value $b_i \cdot W_i^{(j-1)} + b_i \cdot l_j$ (i.e., minimizing the time when machine i finishes when job j is assigned to it) where ties are broken arbitrarily.

Can you design prices such that this algorithm and the designed prices form a truthful mechanism?

EXERCISE 11.4: (6 points)
In the Generalized Second-Price (GSP) Auction, n advertisement slots with click-through rates $r_1 \geq r_2 \geq \ldots \geq r_n \geq 0$, are auctioned off to n buyers with per-click valuations $v_1 \geq v_2 \geq \ldots \geq v_n > 0$. In GSP, each buyer i cast a bid b_i, the mechanism sorts the bids in a decreasing order, assigns the k-th highest bidder the corresponding slot k, and charges it the price-per-click equal to the bid $b_{\sigma(k)+1}$ (with the convention that $b_{n+1} := 0$). Let $\pi(j)$ denote the player that is assigned to slot j, $j = 1, 2, \ldots, n$. (Observe that π is a permutation of $\{1, 2, \ldots, n\}$.) Then, the valuation of player $\pi(j)$ of the slot j is $v_{\pi(j)} \cdot r_j$, and the payment of the player is $b_{\pi(j+1)} \cdot r_j$. Thus, the player’s payoff is $v_{\pi(j)} \cdot r_j - b_{\pi(j+1)} \cdot r_j$.

Consider the GSP auction as a strategic game, where the strategies of players are the bids b_i, and the payoffs are given by the result of the GSP auction. The social welfare of a strategic profile $b = (b_1, \ldots, b_n)$ is the total valuation of the slots assigned to players, i.e., $\text{SW}(b) := \sum_{j=1}^n v_{\pi(j)} \cdot r_j$. An assignment of slots to bidders that maximizes this sum is called a social optimum, and denoted by OPT. Observe that an assignment where $\pi(j) = j$ is a social optimum, having social welfare $\sum_{j=1}^n v_j \cdot r_j$.

We are interested in price of anarchy (PoA), which is now defined as the ratio

$$\frac{\text{SW}(\text{OPT})}{\text{SW}(\text{worst NE})} = \frac{\sum_{j=1}^n v_j \cdot r_j}{\sum_{j=1}^n v_{\pi^*(j)} \cdot r_j},$$

where $\pi^*(j), j = 1, \ldots, n$ is the assignment of buyers to slots in a Nash equilibrium of largest social welfare.

a) Show that PoA can be arbitrary bad, i.e., show that for any $\alpha > 1$ there exists a setting in which the PoA is larger than α.

(Hint: You may consider a Vickrey auction translated into GSP.)
b) Consider the restriction of GSP game in which every player i can only bid $b_i \leq v_i$ (i.e., the set of strategies S_i is equal to $\{x : x \leq v_i\}$.

i) Consider a Nash equilibrium, and let $\pi(j)$ be the buyer assigned to slot j in this Nash equilibrium. Prove that for every j and j', the following holds:

$$v_{\pi(j')} \cdot r_{j'} + v_{\pi(j)} \cdot r_j \geq v_{\pi(j')} \cdot r_j,$$

or, equivalently,

$$\frac{r_{j'}}{r_j} + \frac{v_{\pi(j)}}{v_{\pi(j')}} \geq 1.$$

(Hint: Use the fact that in NE no player wants to change its strategy to obtain a different slot.)

ii) Using the above inequality, prove that in any restricted GSP game, the price of anarchy is at most two.