Exercise 6.1 Median-of-three Quicksort.

We use quicksort with the median-of-three strategy (see the book, section 2.2.2 for a detailed description) to sort $A[l..r]$: First, we calculate the median of the elements a_l, a_m and a_r where $m = \lfloor (l+r)/2 \rfloor$, then we swap a_r with the median and use a_r as the pivot. Given n_0, provide a sequence of length $n \geq n_0$ for which the median-of-three quicksort compares $\Omega(n^2)$ keys. Prove that this sequence really leads to a quadratic number of key comparisons.

Exercise 6.2 Number of different Search Trees.

Let $K_n = \{1, 2, ..., n\}$ be a set of keys. Derive a recursive formula for the number of different binary search trees that contain exactly the keys in K_n. You do not need to eliminate the recursion.

Exercise 6.3 Traversal of Trees.

a) Give the sequence generated by a preorder and a postorder traversal of the following tree.

![Tree Diagram]

b) Draw the binary search tree that generates the preorder traversal 11, 5, 9, 21, 14, 12, 19, 17, 22, 30.

Exercise 6.4 Hash functions.

We consider open hashing with a hash table of size p for a prime p.

a) Decide which of the following functions are useful as a hash functions (and which are not), and justify your answer.

- $h(k) = \text{Digit sum of } k$
- $h(k) = k(1 + p + p^2) \mod p$
- $h(k) = \lfloor p(rk - \lfloor rk \rfloor) \rfloor$, $r \in \mathbb{R}^+ \setminus \mathbb{Q}$

b) In this task we use the hash function $h(k) = k \mod p$ and resolve collisions using double hashing. Let q be the largest prime smaller than p, $h'(k)$ the second hash function and $s(j, k)$ the probing function. The complete hash function in the j-th step is $h(k) - jh'(k) \mod p$ if $h'(k)$ is given, and $h(k) - s(j, k) \mod p$ if $s(j, k)$ is given. Decide which of the following choices of $h'(k)$ and $s(j, k)$ are reasonable (and which are not), and justify your answer.

- $h'(k) = \lceil \ln(k + 1) \rceil \mod q$
- $s(j, k) = k^j \mod p$
- $s(j, k) = ((k \cdot j) \mod q) + 1$

Hand-in: until Wednesday, 10th April 2013.