Solution 2.1 Recurrence Relations.

We conjecture that the closed form of the recurrence relation is the following series:

\[T(n) = a^\log_b(n) + c n \sum_{i=0}^{\log_b(n)-1} \left(\frac{a}{b} \right)^i + d \sum_{i=0}^{\log_b(n)-1} a^i. \]

(1)

We distinguish three cases:

Case 1: \(a \neq b, a \neq 1 \). In this case, our conjecture becomes

\[T(n) = a^{\log_b(n)} + c n \cdot \left(\frac{a}{b} \right)^{\log_b(n)-1} - 1 \cdot \frac{a^{\log_b(n)-1}}{a-1} + d \cdot \frac{a^{\log_b(n)-1} - 1}{a-1}. \]

(2)

Base step: The conjecture is true for \(n = 1 \), because \(T(1) = a^0 e + c \cdot 0 + d \cdot 0 = e \).

Inductive hypothesis: We assume our conjecture to be true for \(T(n/b) \), so (we have \(\log_b(n/b) = \log_b(n) - 1 \))

\[T(n/b) = a^{\log_b(n)-1} e + c n \cdot \left(\frac{a}{b} \right)^{\log_b(n)-1} - 1 \cdot \frac{a^{\log_b(n)-1}}{a-1} + d \cdot \frac{a^{\log_b(n)-1} - 1}{a-1}. \]

(3)

Inductive step: By using the inductive hypothesis we show that the conjecture holds for \(T(n) \):

\[T(n) = aT(n/b) + cn + d \]

Ind.hyp.

(4)

\[= a \left(a^{\log_b(n)-1} e + c n \cdot \left(\frac{a}{b} \right)^{\log_b(n)-1} - 1 \cdot \frac{a^{\log_b(n)-1}}{a-1} \right) + cn + d \]

(5)

\[= a^{\log_b(n)} e + c n \cdot \left(\frac{a}{b} \right)^{\log_b(n)-1} - 1 \cdot \frac{a^{\log_b(n)-1}}{a-1} + cn \cdot \frac{a - 1}{a - 1} + d \cdot \frac{a^{\log_b(n)-1} - a}{a-1} + d \cdot \frac{a - 1}{a-1} \]

(6)

\[= a^{\log_b(n)} e + c n \cdot \left(\frac{a}{b} \right)^{\log_b(n)-1} - 1 \cdot \frac{a^{\log_b(n)-1}}{a-1} + d \cdot \frac{a^{\log_b(n)} - 1}{a-1}. \]

(7)

Case 2: \(a \neq b, a = 1 \). In this case, our conjecture becomes

\[T(n) = e + c n \cdot \left(\frac{1}{b} \right)^{\log_b(n)-1} - 1 \cdot \frac{1}{b-1} + d \log_b(n) = d \log_b(n) + cb \cdot \frac{1-n}{1-b} + e. \]

(8)

Base step: The conjecture is true for \(n = 1 \), because \(T(1) = d \cdot \log_b(1) + c b \cdot \frac{1}{1-b} + e = 0 + 0 + 1 \).

Inductive hypothesis: We assume our conjecture to be true for \(T(n/b) \), so

\[T(n/b) = d \log_b(n/b) + cb \cdot \frac{1-n}{1-b} + e. \]

(9)
Inductive hypothesis: By using the inductive hypothesis we show that the conjecture holds for $T(n)$:

$$T(n) = T(n/b) + cn + d$$

Ind. hyp.

$$= d \log_b(n/b) + cb \cdot \frac{1 - \frac{n}{b}}{1 - \frac{1}{b}} + e + cn + d \log_b(b)$$

$$= d \log_b(n) + c \cdot \frac{b - n}{1 - b} + cn + e$$

$$= d \log_b(n) + c \cdot \frac{b - n + nb}{1 - b} + e$$

$$= d \log_b(n) + cb \cdot \frac{1 - n}{1 - b} + e.$$ (14)

Case 3: $a = b, (a \neq 1)$. In this case, our conjecture becomes

$$T(n) = ne + cn \log_b(n) + d \cdot \frac{n - 1}{a - 1}.$$ (15)

Base step: The conjecture is true for $n = 1$, because $T(1) = 1 \cdot e + c \cdot 1 \cdot 0 + d \cdot \frac{1 - 1}{a - 1} = e$.

Inductive hypothesis: We assume our conjecture to be true for $T(n/b)$, so

$$T(n/b) = \frac{n}{b} \cdot e + c \cdot \frac{n}{b} \cdot \log_b(n/b) + d \cdot \frac{n - 1}{a - 1}.$$ (16)

Inductive step: By using the inductive hypothesis we show that the conjecture holds for $T(n)$:

$$T(n) = aT(n/b) + cn + d$$

Ind. hyp.

$$= a \left(\frac{n}{b} \cdot e + c \cdot \frac{n}{b} \cdot \log_b(n/b) + d \cdot \frac{n - 1}{a - 1} \right) + cn \log_b(b) + d$$

$$= \frac{a}{b} \cdot ne + \frac{a}{b} \cdot cn \log_b(n) - \frac{a}{b} \cdot cn + cn + d \cdot \frac{a}{b} \cdot n - a + a - 1 \cdot \frac{a - 1}{a - 1}$$

$$= ne + cn \log_b(n) + d \cdot \frac{n - 1}{a - 1}.$$ (20)

Solution 2.2 \textit{Estimating asymptotic Running Time.}

a) To obtain an upper bound, we overestimate the running time. The inner loop has at most $\lceil n/2 \rceil$ iterations, the outer one at most n. Therefore the overall running time is at most $O(n^2)$. Now we underestimate the running time: the inner loop has at least $\lfloor n/8 \rfloor$ iterations, the outer one at least $\lfloor n/10 \rfloor$. Therefore the running time has a lower bound of $\Omega(n^2)$, thus it is in $\Theta(n^2)$.

b) The loop in the steps 2–3 is repeated exactly $\lceil \sqrt{n} \rceil$ times, the loop in the steps 4–5 exactly $\lfloor \log_2(n) \rfloor$ times. Since $\lceil \sqrt{n} \rceil \geq \lfloor \log_2(n) \rfloor$ for every $n \in \mathbb{N}$, the overall number of iterations in the steps 2–5 is at least \sqrt{n} and at most $2\sqrt{n}$. Therefore the running time in these steps is in $\Theta(n \sqrt{n})$. Since the outer loop is repeated exactly n times, the overall running time is in $\Theta(n \sqrt{n})$.

c) Without the recursive calls in step 3 the running time is constant, i.e. it is upper bounded by a constant C. If we consider also recursive calls, the overall running time is at most

$$T(n) = C + 2T(n/2), T(1) = C.$$ (21)

Setting $a = b = 2$, $c = 0$ and $d = e = C$, we can solve the recurrent relation using exercise 2.1, and we obtain $T(n) = C(2n - 1) \in \Theta(n)$.

2
Solution 2.3 Cost Models.

a) We first observe that before the k-th iteration of the loop the value of x is exactly 2^{2^k-1}. We prove this by induction over k.

Base step: The statement is true for $k = 1$ since the value of x before the first iteration is $2 = 2^1 = 2^0 = 2^{2^1-1}$.

Inductive hypothesis: Let $x = 2^{2^k-1}$ before the k-th iteration.

Inductive step: By inductive hypothesis we assume that $x = 2^{2^k-1}$ before the k-th iteration. After the multiplication we obtain $x = 2^{2^k-1} \cdot 2^{2^k-1} = 2^{2^k}$, thus, before the $(k+1)$-th iteration the value of x is $2^{2^{(k+1)-1}}$.

Now we know that before the n-th (and last) iteration the value of x is $2^{2^{n-1}}$. The multiplication finally computes $x = 2^{2^{n-1}} \cdot 2^{2^{n-1}} = 2^{2^n}$.

b) Since the loop is iterated n times, we have $2n + 2$ assignments, n multiplications, n additions and $n + 1$ comparisons (namely “$k \leq n$” before each iteration, and one before the termination). Therefore the uniform costs are $(2n + 2) + n + n + (n + 1) = 5n + 3$, i.e. linear in n.

c) In the logarithmic cost model the cost of an operation is the logarithm of the largest number involved in this operation (strictly speaking we also had to add 1 which we ignore for now). We have seen in a) that $x = 2^{2^k-1}$ before the k-th iteration. Therefore the cost of just the multiplication in the k-th iteration is $\log_2(2^{2^k-1}) = 2^k-1$. If we consider only multiplications and ignore all other operations, then all iterations together have an overall cost of at least

$$2^0 + 2^1 + \cdots + 2^{n-1} = 2^n - 1.$$ \hspace{1cm} (22)

Since we ignored all operations other than multiplications, the overall cost of the code fragment is greater than $2^n - 1$, i.e., it is at least 2^n.

Solution 2.4 Algorithm Design: Divide-and-Conquer.

With the “divide-and-conquer” paradigm we get to the following solution: the array is divided in two parts of equal size (for simplicity we will assume that n is even). The key observation is the following: if a majority element exists in $A[1..n]$, i.e., if it occurs more than $n/2$ times, then we can find it in at least one of the two halves more than $n/4$ times (if it occurred at most $n/4$ times in both of the two halves, then it occurred in $A[1..n]$ only at most $n/2$ times). It follows that, if an element is a majority element in $A[1..n]$, then it is a majority element also in at least one of the two halves, either in $A[1..n/2]$ or in $A[n/2 + 1..n]$. The same considerations hold also if n is odd. Therefore we can determine recursively whether a majority element exists in one of the two halves. This gives us one, two or no candidates (i.e., possible elements) for the majority element of $A[1..n]$. For each of these candidates we can easily check whether it is the majority element of $A[1..n]$ by going through the array and counting how many times each candidate appears.

Analysis: Let $T(n)$ be the running time of the algorithm for an array with n elements. Then, we get $T(n) = 2T(n/2) + cn + d$, and $T(1) = e$, where c,d,e are constants. We can solve this recurrence relation using exercise 2.1, and obtain $T(n) = ne + cn \log_2(n) + d(n - 1) \in \Theta(n \log n)$.

3