There is a definition of the O notation that is different from the one given at the lecture. Namely, for a function $g : \mathbb{N} \to \mathbb{R}^+$, let
\begin{equation}
O(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} \forall n \geq n_0 : f(n) \leq cg(n) \}.
\end{equation}

Analogously, we say that a function f grows asymptotically at least as much as g, if $f \in \Omega(g)$ with
\begin{equation}
\Omega(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} \forall n \geq n_0 : f(n) \geq cg(n) \}.
\end{equation}

A function f grows asymptotically like g when $f \in O(g)$ and $f \in \Omega(g)$. We denote this by $f = \Theta(g)$.

For these exercises, you can choose to use the definition given at the lecture, or use the above definition.

Exercise 1.1 The Set $\Theta(g)$.

Give a definition of the set $\Theta(g)$ as compactly as possible (i.e., with the fewest possible parameters and quantifiers), analogously to the above definitions for the sets $O(g)$ and $\Omega(g)$.

Exercise 1.2 Proofs about O Notation.

Prove or disprove the following statements, where $f, g : \mathbb{N} \to \mathbb{R}^+$.

- a) $f \in O(g)$ if and only if $g \in \Omega(f)$.
- b) If $f \in O(g)$, then $f(n) \leq g(n)$ for every $n \in \mathbb{N}$.
- c) If $f(n) \leq g(n)$ for every $n \in \mathbb{N}$, then $f \in O(g)$.
- d) There exist different functions f and g such that $f \in \Omega(g)$ and $g \in \Omega(f)$.
- e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$.
- f) Let $f_1, f_2 \in O(g)$ and $f(n) := f_1(n) + f_2(n)$. Then, $f \in O(g)$.
- g) Let $f_1, f_2 \in O(g)$ and $f(n) := f_1(n) \cdot f_2(n)$. Then, $f \in O(g)$.
- h) $n^d \in O(b^n)$ for fixed values $d > 0$ and $b > 1$.

Exercise 1.3 Asymptotic Growth of Functions.

Sort the following functions from left to right such that: if function f is on the left of g, then $f \in O(g)$.

Example: the functions n^3, n^7, n^9 are already in the right order since $n^3 \in O(n^7)$ and $n^7 \in O(n^9)$.

$$
\log(n^{11}), \sqrt{2n}, n!, n^n, 15^7, \sqrt{n}, \frac{2^n}{n^2}, \log(n!), \left(\frac{n}{2}\right), \frac{1}{n}, \log^3(n)
$$

Please turn over.
Exercise 1.4 Programming Exercise.

In this exercise, we want to evaluate a recurrence relation of the form

\[R_n = \begin{cases}
 A & \text{if } n = 0 \\
 B & \text{if } n = 1 \\
 C \cdot R_{n-1} + D \cdot R_{n-2} & \text{otherwise}
\end{cases} \]

i.e. we want to compute \(R_i \) for a given \(i \in \mathbb{N} \). For example, if \(A = 0, \ B = 1, \ C = 1 \) and \(D = 1 \), then \(R_n \) produces the well-known Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, \ldots

Input The first line of the input contains only the number \(t \) of test instances. After that, we have exactly one line for each test instance containing the numbers \(i, A, B, C, D \) (in exactly this order, separated by spaces). While \(0 \leq i \leq 50 \) is a natural number, \(A \) and \(B \) are integers from the interval \([−10^3, 10^3]\), and \(C \) and \(D \) are either 1 or \(-1\).

Output For every test instance, we want to output a single line containing only the value \(R_i \).

Example

Input:

```
2
20 0 1 1 1
22 5 10 1 -1
```

Output:

```
6765
-10
```

Notes

1) The values \(R_i \) can be very large. You should use the data type `long` instead of `int`.

2) To read an input from the console you can import the class `java.util.Scanner` and use the following code fragment:

```java
Scanner in = new Scanner(System.in);
int value1 = in.nextInt();
int value2 = in.nextInt();
```

Hand-in: until Wednesday, 25th February 2015.