Exercise 3.1

Comparison of Sorting Algorithms.

Let $A[1..n]$ be an array. Consider the following naive implementations of the sorting algorithms bubble sort, insertion sort, selection sort, and quicksort. These algorithms are called with the parameters $l = 1$ and $r = n$ to sort A in ascending order.

```java
public void bubbleSort(int[] A, int l, int r) {
    for(int i=r; i>l; i--)
        for(int j=l; j<i; j++)
            if(A[j]>A[j+1])
                swap(A, j, j+1);
}

public void insertionSort(int[] A, int l, int r) {
    for(int i=l; i<r; i++) {
        int minJ = i;
        for(int j=i+1; j<=r; j++)
            if(A[j]<A[minJ])
                minJ = j;
        if(minJ != i)
            swap(A, i, minJ);
    }
}

public void selectionSort(int[] A, int l, int r) {
    for(int i=l; i<r; i++)
        for(int j=i-1; j>=l && A[j]>A[j+1]; j--)
            swap(A, j, j+1);
}

public void quicksort(int[] A, int l, int r) {
    if(l<r) {
        int i=l+1, j=r;
        do {
            while(i<j && A[i]<=A[l]) i++;
            while(i<=j && A[j]>=A[l]) j--;
            if(i<j) swap(A, i, j);
        } while(i<j);
        swap(A, l, j);
        quicksort(A, l, j-1);
        quicksort(A, j+1, r);
    }
}
```

The function `swap(A, i, j)` exchanges (swaps) the elements $A[i]$ and $A[j]$. For each of the above algorithms, estimate asymptotically both the minimum and the maximum number of performed swaps and comparisons of elements of A. For each of these cases, give an example sequence of the numbers $1, 2, \ldots, n$ for which the particular case occurs. The sequence should be described in such a way that any n can be chosen arbitrarily (i.e., the descending sorted sequence can be described as $n, n-1, \ldots, 1$). Enter your results in a table of the following form.

<table>
<thead>
<tr>
<th></th>
<th>bubbleSort</th>
<th>insertionSort</th>
<th>selectionSort</th>
<th>quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>Comparisons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permutations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please turn over.
Exercise 3.2 Questions About Sorting Algorithms.

Answer the following questions and give a brief explanation of your answer.

a) Does the sorted sequence 1, 2, ..., n implicitly represent a Min-Heap?

b) When all the elements in a Min-Heap are different, at which positions could the largest element be found?

c) A comparison-based algorithm is called stable if the relative order of identical elements is not changed. If the key ’5’, for example, occurs twice in an array, then the first 5 is never moved past the second 5. Which of the comparison-based sorting methods that you know are stable, or can easily be adapted accordingly?

d) A sorting algorithm is called in-situ if it requires only constant space in addition to the input sequence. Which sorting algorithms that you know are in-situ, or can easily be adapted accordingly?

e) The worst-case running time of Quicksort is $\Theta(n^2)$, while the worst-case running time of Mergesort is $\Theta(n \log n)$. Provide two reasons why, despite this fact, Quicksort is the more popular solution in practice.

Exercise 3.3 Extended Heaps.

In this exercise we are considering an array $A[1..|A|]$ representing a Min-Heap. We want to use A to maintain a set of n keys. Describe how the following operations can be implemented efficiently (i.e., with a running time in $O(\log n)$).

a) MIN: Computes the smallest key.

b) REPLACE(i, k): Removes the key $A[i]$ and replaces it by k.

c) INSERT(k): Inserts a new key with value k in the heap.

d) DELETE(i): Removes the key $A[i]$ from the heap.

Note: Of course you have to make sure that the heap property is maintained after each operation. You can assume that A was chosen large enough to store all occurring keys.

Exercise 3.4 Algorithm Design: Sums of Numbers.

Let $A[1..n]$ be an array of natural numbers. For each of the following problems, provide an algorithm that is as efficient as possible, and determine its running time in the worst case.

a) Given a natural number z, does the array A contain two entries a and b such that $a + b = z$?

b) Suppose that A is sorted in ascending order. How efficiently can the problem from a) be solved now? Hint: In this case it is possible to achieve a better running time than in the previous case.

c) Does the array A contain any three different entries a, b and c such that $a + b = c$?