Exercise 7.1 Implementing a Queue with Stacks.

An ordinary stack supports the following two operations in time $\Theta(1)$:

- **Push(x)**: puts an object x onto the stack.
- **Pop**: outputs and removes the last object that was added to the stack.

Describe how a queue can be implemented using two stacks such that the following operations have amortized running time $\Theta(1)$:

- **Enqueue(x)**: adds an object x at the end of the queue.
- **Dequeue**: outputs and removes the object *at the front* of the queue.

Exercise 7.2 Numerical Puzzle.

You are given a sequence of n digits from the set $\{0, \ldots, 9\}$ and a positive integer σ. If plus signs are inserted between some digits, and if the digits between two plus signs are interpreted as a decimal number, then the sum of the corresponding numbers can be computed. In general, different insertions of plus signs yield different sums.

Example: For the sequence $[6 \ 9 \ 2 \ 5 \ 0 \ 2 \ 1 \ 3]$ we can obtain the sums, for example, $69 + 2 + 5 + 0 + 21 + 3 = 100$ and $6 + 9 + 250 + 21 + 3 = 289$.

The exercise is to decide whether plus signs can be inserted into a given sequence such that the sum equals exactly σ.

a) Design an efficient algorithm that uses dynamic programming to solve this problem. You may assume that σ is relatively small in relation to n. Provide also the running time of your solution. Is it polynomial in the size of the input?

Hint: Notice that you only need to decide whether σ can be achieved or not.

b) How can we efficiently find all arrangements of plus signs that yield the desired sum?

Exercise 7.3 Programming Exercise: Longest Common Subsequence.

In this exercise we are going to implement the dynamic programming algorithm for solving the *longest common subsequence problem* that was presented in the lecture. We are given two strings of text $A = a_1 \cdots a_n$ and $B = b_1 \cdots b_m$, where $a_1, \ldots, a_n, b_1, \ldots, b_m$ are characters from an alphabet Σ, and we look for a longest string that is a (not necessarily contiguous) subsequence of both A and B. For example, if $A = \text{“AGCAT”}$ and $B = \text{“GAC”}$, the longest common subsequences would be one of the following: “AC”, “GC”, “GA”.

Please turn over.
The algorithm uses a table $A[\cdot, \cdot]$ with $n + 1$ rows and $m + 1$ columns. For $0 \leq i \leq n$ and $0 \leq j \leq m$, the entry $A[i, j]$ represents the length of the longest common subsequence for the substrings of the original strings $a_1 \cdots a_i$ and $b_1 \cdots b_j$. For $i, j \geq 1$, it is computed as follows:

$$A[i, j] = \begin{cases} A[i - 1, j - 1] + 1 & \text{if } a_i = b_j \\ \max\{A[i - 1, j], A[i, j - 1]\} & \text{otherwise.} \end{cases}$$

(1)

Since $i = 0$ and $j = 0$ represent the empty substrings, $A[i, 0]$ and $A[0, j]$ are set to 0 for every i, $0 \leq i \leq n$ and for every j, $0 \leq j \leq m$.

After the table has been filled, the entry $A[n, m]$ contains the length k of the longest common subsequence. The longest common subsequence itself is reconstructed from there using backtracing. If $a_n = b_m$, we set a_n as the k-th character of the longest common subsequence, set $k \leftarrow k - 1$ and continue in the same fashion with the entry $A[n - 1, m - 1]$. If $a_n \neq b_m$, then we check whether $A[n, m] = A[n - 1, m]$ holds. If yes, then we continue with $A[n - 1, m]$, and with $A[n, m - 1]$ otherwise. We stop once we have read all the k characters of the longest common subsequence. On the right, you can see the table $A[i, j]$ for the example strings $A = \text{“ZEBRA”}$ and $B = \text{“ZIEGE”}$.

Input The first line contains only the number t of test instances. After that, we have exactly two lines per test instance. The first line contains the sequence A, and the second line contains the sequence B. The alphabet used is $\Sigma = \{A, B, \ldots, Z\}$.

Output For every test instance we output only one line. This line contains the length of the longest common subsequence followed by the longest common subsequence computed by the above algorithm.

Example

```
Input:

2
AGCAT
GAC
ROCK
ROLL

Output:

2 AC
2 RO
```