
Algorithmic Game Theory Summer 2015, Week 1

Game Theory Basics
ETH Zürich Paul Dütting

These notes cover the material presented in the first exercise session. We introduce basic
notions from Game Theory, such as the concept of a (normal form) game and elementary
equilibrium concepts.

1 Normal Form Game
Definition 1.1. A (normal form, cost minimization) game is a triple (N , (Si)i∈N , (ci)i∈N ) where

• N is the set of players, n = |N |,

• Si is the set of (pure) strategies of player i,

• S =
∏

i∈N Si is the set of states,

• ci : S → R is the cost function of player i ∈ N . In state s ∈ S, player i has a cost of ci(s).

We denote by s−i = (s1, ..., si−1, si+1, ..., sn) a state s without the strategy si. This notation
allows us to concisely define a unilateral deviation of a player. For i ∈ N , let s ∈ S and s′i ∈ Si,
then (s′i, s−i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn).

2 Dominant Strategy Equilibrium
Definition 1.2. A pure strategy si is called a dominant strategy for player i ∈ N if ci(si, s−i) ≤
ci(s′i, s−i) for every s′i ∈ Si and every s−i.

Definition 1.3. A state s ∈ S is called a dominant strategy equilibrium if for every player
i ∈ N strategy si ∈ Si is a dominant strategy.

A dominant strategy equilibrium provides a very strong guarantee for each player: What
they do is the best they can no matter what the other players do.

Example 1.4 (Prisoner’s Dilemma). Two criminals are interrogated separately. Each of them
has two possible strategies: (C)onfess, remain (S)ilent. Confessing yields a smaller sentence if
the other one is silent. If both confess, the sentence is larger for both (4 years) compared to when
they both remain silent (2 years).

S C
2 1

S
2 5

5 4
C

1 4

• If both players remain (S)ilent, the total cost is smallest.
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• If both players (C)onfess, the cost is larger for both of them.

• Still, for each player confessing is always the preference!

In other words, for both players strategy C is a dominant strategy and the state (C,C) in
which both players choose strategy C is a dominant strategy equilibrium.

Not every game has a dominant strategy equilibrium.

Example 1.5 (Battle of the Sexes). Suppose Angelina and Brad go to the movies. Angelina
prefers watching movie A, Brad prefers watching movie B. However, both prefer watching a
movie together to watching movies separately.

A B
1 6

A
2 6

5 2
B

5 1

There is no dominant strategy of either of the two player: In state (A,A) the preference for
both is A. In state (B,B) the preference for both is B.

3 Pure Nash Equilibrium
Definition 1.6. A strategy si is called a best response for player i ∈ N against a collection of
strategies s−i if ci(si, s−i) ≤ ci(s′i, s−i) for all s′i ∈ Si.

Note: A strategy si is a dominant strategy if and only if si is a best response for all s−i.

Definition 1.7. A state s ∈ S is called a pure Nash equilibrium if si is a best response against
the other strategies s−i for every player i ∈ N .

So, a pure Nash equilibrium is stable against unilateral deviation. No player can reduce his
cost by only changing his only strategy.

Clearly, every dominant strategy equilibrium is a Nash equilibrium.

Example 1.8 (Prisoner’s Dilemma). Recall the game from Example 1.4. We can find its unique
pure Nash equilibrium (C,C) by marking best responses with boxes.

S C
2 1

S
2 5

5 4
C

1 4

Pure nash equilibria need not be unique.
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Example 1.9 (Battle of the Sexes). Recall the game from Example 1.4. We can find its pure
Nash equilibria (A,B) and (B,A) by marking best responses with boxes.

A B
1 6

A
2 6

5 2
B

5 1

Not every game has a pure Nash equilibrium.

Example 1.10 (Inspection Game). Consider a game between a user of the Polybahn and an
inspector from ZVV. The user can either (C)omply and buy a ticket or (D)efect and do not
buy one. The inspector can decide to be (L)azy and inspect or he can decide to (I)nspect. The
inspector prefers to inspect only if the user is not holding a ticket. The user, in contrast, prefers
to buy a ticket only if he will be inspected.

C D
0 -10

L
0 10

0 90
I

1 6

4 Mixed Nash Equilibrium
Definition 1.11. A mixed strategy σi for player i is a probability distribution over the set of
pure strategies Si.

We will only consider the case of finitely many pure strategies and finitely many players. In
this case, we can write a mixed strategy σi as (σi,si)si∈Si with

∑
si∈Si

σi,si = 1. The cost of a
mixed state σ for player i is

ci(σ) =
∑
s∈S

p(s) · ci(s) ,

where p(s) =
∏

i∈N σi,si is the probability that the outcome is pure state s.

Definition 1.12. A mixed strategy σi is a (mixed) best-response strategy against a collection
of mixed strategies σ−i if ci(σi, σ−i) ≤ ci(σ′i, σ−i) for all other mixed strategies σ′i.

Definition 1.13. A mixed state σ is called a mixed Nash equilibrium if σi is a best-response
strategy against σ−i for every player i ∈ N .

Note that every pure strategy is also a mixed strategy and every pure Nash equilibrium is
also a mixed Nash equilibrium.

It is enough to only consider deviations to pure strategies.
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Lemma 1.14. A mixed strategy σi is a best-response strategy against σ−i if and only if
ci(σi, σ−i) ≤ ci(s′i, σ−i) for all pure strategies s′i ∈ Si.

Proof. The “only if” part is trivial: Every pure strategy is also a mixed strategy.
For the “if” part, let σ−i be an arbitrary mixed strategy profile for all players except for i.

Furthermore, let σi be a mixed strategy for player i such that ci(σi, σ−i) ≤ ci(s′i, σ−i) for all
pure strategies s′i ∈ Si.

Observe that for any mixed strategy σ′i, we have ci(σ′i, σ−i) =
∑

s′
i∈Si

σ′i,s′
i
ci(s′i, σ−i) ≥

mins′
i∈Si

ci(s′i, σ−i). Using mins′
i∈Si

ci(s′i, σ−i) ≥ ci(σi, σ−i), we are done.

A very important property of mixed best responses is that they are always probability
distributions over pure best responses.

Lemma 1.15. A mixed strategy σi is a best-response strategy against σ−i if and only if every
strategy in the support of σi, i.e., every sj ∈ Si with σi,sj > 0, is a best response against σ−i.

Proof. First suppose σi is a distribution over pure best responses. Then for every strategy
si ∈ Si with σi,si > 0 and every pure strategy s′i ∈ Si we have

ci(σi, σ−i) = ci(si, σ−i) ≤ ci(s′i, σ−i).

Now we can invoke Lemma 1.14 to conclude that σi is a best response to σ−i.
Next suppose σi is not a distribution over pure best responses. Then there exists strategies

si, s
′
i ∈ Si such that σi,si > 0 but ci(si, σ−i) > ci(s′i, σ−i). We construct distribution σ′i from σi

by increasing σi,s′
i
by σi,si and decreasing σi,si to zero. Then,

ci(σ′i, σ−i) < ci(σi, σ−i),

and so σi cannot be a best response.

Hence we can compute mixed Nash equilibria by choosing probabilities for one player that
will make the other player indifferent between his pure strategies.

Example 1.16 (Inspection Game). Recall the game from Example 1.10.

C D
0 -10

L 1-p
0 10

0 90
I p

1 6
1− q q

Let us compute probabilities (1− p, p) for the row player and (1− q, q) for the column player
that make the other player indifferent.

To determine the probabilities of the column player, we compute the expected costs for the
pure strategies of the row player, equate them, and solve for q:

crow(D, (1− q, q)) = crow(I, (1− q, q))
⇔ 0 · (1− q) + 10 · q = 1 · (1− q) + 6 · q

⇔ q = 1
5 .
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Similarly, to determine the probabilities for the row player:

ccol(C, (1− p, p)) = ccol(D, (1− p, p))
⇔ 0 · (1− p) + 0 · p = 10 · (1− p) + (−90) · p

⇔ p = 1
10 .

We obtain the mixed Nash equilibrium in which the row player mixes between D and I
with probabilities (9/10, 1/10) and the column player mixes between C and D with probabilities
(4/5, 1/5).

There are a number of useful techniques that help compute mixed Nash equilibria.

Technique 1 (Elimination of Strictly Dominated Strategies). It is generally advisable to check
for strictly dominated strategies. A strategy si is strictly dominated by some strategy s′i if
ci(si, s−i) > ci(s′i, s−i) for every s−i. Strictly dominated strategies can be eliminated from the
game without losing Nash equilibria.

Technique 2 (The Difference Trick). In a 2 × 2 game there is a quick way to determine the
probabilities that are needed for a mixed Nash equilibrium in which the players use both strategies.
The trick works in the same way for both players, so we only show how to use it to compute the
probabilities of the row player.

L R
BT,L BT,R ∆T = |BT,L −BT,R|

T 1− p = ∆B
∆T +∆B

AT,L AT,R

BB,L BB,R ∆B = |BB,L −BB,R|
B p = ∆T

∆T +∆B

AB,L AB,R

That is, we first take the absolute difference between the payoffs of the column player for each
strategy of the row player to obtain ∆T = |BT,L − BT,R| and ∆B = |BB,L − BB,R|. Then the
probability for the top strategy is 1 − p = ∆B/(∆T + ∆B) and the probability for the bottom
strategy is p = ∆T /(∆T + ∆B).

Technique 3 (The Goalpost Method). We can also find the probabilities at which a player
becomes indifferent between two of his strategies in a graphical manner. For the parametrized
game considered for the difference trick:

0 1

L

R

prob(B)

payoff to column player

BT,L

BB,L

BT,R

BB,R

p
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We can read off the best responses of the column player from the lower envelope. At
prob(B) = 0 the column player prefers L, at prob(B) = 1 he prefers R, and at prob(B) = p he
is indifferent between L and R.

While dominant strategy equilibria and pure Nash equilibria do not necessarily exist, mixed
Nash equilibria always exist if the number of players and the number of strategies is finite.

Theorem 1.17 (Nash’ Theorem). Every finite normal form game has a mixed Nash equilibrium.

5 Bonus Material: Proof of Nash’ Theorem
We will use Brouwer’s fixed point theorem to prove Nash’ theorem.

Theorem 1.18 (Brouwer’s Fixed Point Theorem). Every continuous function f : D → D
mapping a compact and convex nonempty subset D ⊆ Rm to itself has a fixed point x∗ ∈ D with
f(x∗) = x∗.

As a reminder, these are the definitions of the terms used in Brouwer’s fixed point theorem.
Here, ‖ · ‖ denotes an arbitrary norm, for example, ‖x‖ = maxi|xi|.

• A set D ⊆ Rm is convex if for any x, y ∈ D and any λ ∈ [0, 1] we have λx+ (1− λ)y ∈ D.

x
y

convex

x y

not convex

• A set D ⊆ Rm is compact if and only if it is closed and bounded.

• A set D ⊆ Rm is bounded if and only if there is some bound r ≥ 0 such that ‖x‖ ≤ r for
all x ∈ D.

• A set D ⊆ Rm is closed if it contains all its limit points. That is, consider any convergent
sequence (xn)n∈N within D, i.e., limn→∞ xn exists and xn ∈ D for all n ∈ N. Then
limn→∞ xn ∈ D.

[0, 1] is closed and bounded
(0, 1] is not closed but bounded

[0,∞) is closed and unbounded

• A function f : D → Rm is continuous at a point x ∈ D if for all ε > 0, there exists δ > 0,
such that for all y ∈ D: If ‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε.
f is called continuous if it is continuous at every point x ∈ D.

Equivalent formulation of Brouwer’s fixed point theorem in one dimension:
For all a, b ∈ R, a < b, every continuous function f : [a, b]→ [a, b] has a fixed point.
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b

b

a

a

Proof of Theorem 1.17. Consider a finite normal form game. Without loss of generality let
N = {1, . . . , n}, Si = {1, . . . ,mi}. So the set of mixed states X can be considered a subset of
Rm with m =

∑n
i=1mi.

Exercise: Show that X is convex and compact.
We will define a function f : X → X that transforms a mixed strategy profile into another

mixed strategy profile. The fixed points of f are shown to be the mixed Nash equilibria of the
game.

For mixed state x and for i ∈ N and j ∈ Si, let

φi,j(x) = max{0, ci(x)− ci(j, x−i)} .

So, φi,j(x) is the amount by which player i’s cost would reduce when unilaterally moving from x
to j if this quantity is positive, otherwise it is 0.

Observe that by Lemma 1.14 a mixed state x is a Nash equilibrium if and only if φi,j(x) = 0
for all i = 1, . . . , n, j = 1, . . . ,mi.

Define f : X → X with f(x) = x′ = (x′1,1, ..., x
′
n,mn

) by

x′i,j = xi,j + φi,j(x)
1 +

∑mi
k=1 φi,k(x)

for all i = 1, . . . , n and j = 1, . . . ,mi.
Observe that x′ ∈ X. That means, f : X → X is well defined. Furthermore, f is continuous.

Therefore, by Theorem 1.18, f has a fixed point, i.e., there is a point x∗ ∈ X such that f(x∗) = x∗.
We only need to show that every fixed point x∗ of f is a mixed Nash equilibrium. So, in

other words, we need to show that f(x∗) = x∗ implies that φi,j(x∗) = 0 for all i = 1, . . . , n,
j = 1, . . . ,mi.

Fix some i ∈ N . Once we have shown that φi,j(x∗) = 0 for j = 1, . . . ,mi, we are done.
We observe that there is j′ with x∗i,j′ > 0 and ci(x∗) ≤ ci(j′, x∗−i) because ci(x∗) is defined
to be

∑mi
j=1 x

∗
i,j · ci(j, x∗−i). So, it is the weighted average of all costs and it is impossible

that every pure strategy has strictly smaller cost then the weighted average. For this j′,
φi,j′(x∗) = max{0, ci(x∗)− ci(j, x∗−i)} = 0.

We now use the fact that x∗ is a fixed point. Therefore, we have

x∗i,j′ =
x∗i,j′ + φi,j′(x∗)

1 +
∑mi

k=1 φi,k(x∗) =
x∗i,j′

1 +
∑mi

k=1 φi,k(x∗) .
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As x∗i,j′ > 0, we also have

1 = 1
1 +

∑mi
k=1 φi,k(x∗) ,

and so
mi∑

k=1
φi,k(x∗) = 0 .

Since φi,k(x∗) ≥ 0 for all k, we have to have φi,k(x∗) = 0 for all k. This completes the proof.

Recommended Literature
• Philip D. Straffin. Game Theory and Strategy, The Mathematical Association of America,

fifth printing, 2004. (For basic concepts)

• J. Nash. Non-Cooperative Games. The Annals of Mathematics 54(2):286-295. (Nash’
original paper)
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