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Exercise 1: (1+3 Points)
Consider the following instance of a loadbalancing game. There are four players N =
{1, 2, 3, 4}. Players i ∈ {1, 2} have a job with weight wi = 2, and players i ∈ {3, 4}
have a job with weight wi = 1. Every player chooses a machine to process his job on;
his strategy set is therefore {1, 2}. For a given strategy profile s the cost of player i is
ci(s) = loadsi(s) =

∑
i′:si′=si

wi′ and the overall goal is to minimize the makespan cost(s) =

max{load1(s), load2(s)}.

(a) Show that the price of anarchy for pure Nash equilibria is 4/3.

(b) Show that the price of anarchy for mixed Nash equilibria is strictly larger than 4/3.

Exercise 2: (5+2 Points)
Now consider the general case of a loadbalancing game with n players N = {1, 2, . . . , n} and
m machines, in which each player i ∈ N has a job with weight wi and has to choose a machine
j ∈ [m]. The cost of player i under a given strategy profile is ci(s) = loadsi(s) =

∑
i′:si′=si

wi′

and the goal is to minimize the makespan cost(s) = maxl loadl(s). Consider the Largest
Processing Time (LPT) scheduling algorithm. This algorithm inserts the jobs in a non-
increasing order of weights, assigning each job to a machine that minimizes the cost of the
job at its insertion time.

(a) Show that this algorithm computes a pure Nash equilibrium.

(b) Use (a) to bound the price of stability for pure Nash equilibria.

Exercise 3: (2+6 Points)
We now extend our analysis of loadbalancing games to the case where the weight of a job
depends on the machine it is processed on. Formally, we are given a set of players N =
{1, . . . , n} and m machines. Each player i has a job, the weight of this job on machine j is
wi,j > 0. As before the strategy set of each player is {1, . . . ,m}. For a given strategy profile
the cost of player i is ci(s) = loadsi(s) =

∑
i′:si′=si

wi′,si′
and our objective is to minimize the

makespan cost(s) = maxl loadl(s).

(a) Show that the price of anarchy for pure Nash equilibria is unbounded, even if there are
only m = 2 machines.

(b) Show that for m = 2 machines the price of anarchy for strong Nash equilibria is at
most 2.



Exercise 4: (1 Points)
Consider a single-item, first-price auction with n bidders. Show by means of an example that
truthful bidding by all players need not constitute a pure Nash equilibrium.

Exercise 5: (3 Points)
Consider a single-item, first-price auction with n bidders. For ε > 0 a pure ε-Nash equilibrium
is a profile of bids b such that for all bidders i and all possible deviations b′i it holds that
ui(b, vi) ≥ ui((b

′
i, b−i), vi)− ε. Show that independent of the tie-breaking rule, for any ε > 0,

there exists a pure ε-Nash equilibrium in which the bidder i with the highest valuation
vi ≥ maxj vj wins the item and his payment p1sti is p1sti ≤ p2ndi + ε where p2ndi is his payment
in the truthful equilibrium of the second-price auction.


