Algorithmic Game Theory

Fall 2015
Exercise Set 5

Exercise 1:

(1+3 Points)
Consider the following instance of a loadbalancing game. There are four players $\mathcal{N}=$ $\{1,2,3,4\}$. Players $i \in\{1,2\}$ have a job with weight $w_{i}=2$, and players $i \in\{3,4\}$ have a job with weight $w_{i}=1$. Every player chooses a machine to process his job on; his strategy set is therefore $\{1,2\}$. For a given strategy profile s the cost of player i is $c_{i}(s)=\operatorname{load}_{s_{i}}(s)=\sum_{i^{\prime}: s_{i^{\prime}}=s_{i}} w_{i^{\prime}}$ and the overall goal is to minimize the makespan $\operatorname{cost}(s)=$ $\max \left\{\operatorname{load}_{1}(s), \operatorname{load}_{2}(s)\right\}$.
(a) Show that the price of anarchy for pure Nash equilibria is $4 / 3$.
(b) Show that the price of anarchy for mixed Nash equilibria is strictly larger than $4 / 3$.

Exercise 2:

(5+2 Points)
Now consider the general case of a loadbalancing game with n players $\mathcal{N}=\{1,2, \ldots, n\}$ and m machines, in which each player $i \in \mathcal{N}$ has a job with weight w_{i} and has to choose a machine $j \in[m]$. The cost of player i under a given strategy profile is $c_{i}(s)=\operatorname{load}_{s_{i}}(s)=\sum_{i^{\prime}: s_{i^{\prime}}=s_{i}} w_{i^{\prime}}$ and the goal is to minimize the makespan $\operatorname{cost}(s)=\max _{l} \operatorname{load}_{l}(s)$. Consider the Largest Processing Time (LPT) scheduling algorithm. This algorithm inserts the jobs in a nonincreasing order of weights, assigning each job to a machine that minimizes the cost of the job at its insertion time.
(a) Show that this algorithm computes a pure Nash equilibrium.
(b) Use (a) to bound the price of stability for pure Nash equilibria.

Exercise 3:

($2+6$ Points)
We now extend our analysis of loadbalancing games to the case where the weight of a job depends on the machine it is processed on. Formally, we are given a set of players $\mathcal{N}=$ $\{1, \ldots, n\}$ and m machines. Each player i has a job, the weight of this job on machine j is $w_{i, j}>0$. As before the strategy set of each player is $\{1, \ldots, m\}$. For a given strategy profile the cost of player i is $c_{i}(s)=\operatorname{load}_{s_{i}}(s)=\sum_{i^{\prime}: s_{i^{\prime}}=s_{i}} w_{i^{\prime}, s_{i^{\prime}}}$ and our objective is to minimize the makespan $\operatorname{cost}(s)=\max _{l} \operatorname{load}_{l}(s)$.
(a) Show that the price of anarchy for pure Nash equilibria is unbounded, even if there are only $m=2$ machines.
(b) Show that for $m=2$ machines the price of anarchy for strong Nash equilibria is at most 2 .

Consider a single-item, first-price auction with n bidders. Show by means of an example that truthful bidding by all players need not constitute a pure Nash equilibrium.

Exercise 5:

(3 Points)
Consider a single-item, first-price auction with n bidders. For $\epsilon>0$ a pure ϵ-Nash equilibrium is a profile of bids b such that for all bidders i and all possible deviations b_{i}^{\prime} it holds that $u_{i}\left(b, v_{i}\right) \geq u_{i}\left(\left(b_{i}^{\prime}, b_{-i}\right), v_{i}\right)-\epsilon$. Show that independent of the tie-breaking rule, for any $\epsilon>0$, there exists a pure ϵ-Nash equilibrium in which the bidder i with the highest valuation $v_{i} \geq \max _{j} v_{j}$ wins the item and his payment $p_{i}^{1 s t}$ is $p_{i}^{1 s t} \leq p_{i}^{2 n d}+\epsilon$ where $p_{i}^{2 n d}$ is his payment in the truthful equilibrium of the second-price auction.

