Datenstrukturen \& Algorithmen

There is a definition of the \mathcal{O} notation that is different from the one given at the lecture. Namely, for a function $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, let

$$
\begin{equation*}
\mathcal{O}(g):=\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid \exists c \in \mathbb{R}^{+}, n_{0} \in \mathbb{N}, \forall n \geq n_{0}: f(n) \leq c g(n)\right\} . \tag{1}
\end{equation*}
$$

Analogously, we say that a function f grows asymptotically at least as much as g, if $f \in \Omega(g)$ with

$$
\begin{equation*}
\Omega(g):=\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid \exists c \in \mathbb{R}^{+}, n_{0} \in \mathbb{N}, \forall n \geq n_{0}: f(n) \geq c g(n)\right\} . \tag{2}
\end{equation*}
$$

A function f grows asymptotically like g when $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$. We denote this by $f \in \Theta(g)$, or as $f=\Theta(g)$.

For these exercises, you can choose to use the definition given at the lecture, or use the above definition.

Exercise 1.1 The Set $\Theta(g)$.

Give a counterexample that demonstrates that the right-hand side of the following equation does not hold:

$$
\Theta(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid \exists c \in \mathbb{R}^{+}, n_{0} \in \mathbb{N}, \forall n \geq n_{0}: f(n)=c g(n)\right\} .
$$

Give a correct definition of the set $\Theta(g)$ as compactly as possible (i.e., with the fewest possible parameters and quantifiers), analogously to the above definitions for the sets $\mathcal{O}(g)$ and $\Omega(g)$.

Exercise 1.2 Proofs about \mathcal{O} Notation.

Prove or disprove the following statements, where $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$.
a) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$.
b) If $f \in \mathcal{O}(g)$, then $f(n) \leq g(n)$ for every $n \in \mathbb{N}$.
c) If $f(n) \leq g(n)$ for every $n \in \mathbb{N}$, then $f \in \mathcal{O}(g)$.
d) There exist different functions f and g such that $f \in \Omega(g)$ and $g \in \Omega(f)$.
e) $\log _{a}(n) \in \Theta\left(\log _{b}(n)\right)$ for all constants $a, b \in$ $\mathbb{N} \backslash\{1\}$.
f) Let $f_{1}, f_{2} \in \mathcal{O}(g)$ and $f(n):=f_{1}(n)+f_{2}(n)$. Then, $f \in \mathcal{O}(g)$.
g) Let $f_{1}, f_{2} \in \mathcal{O}(g)$ and $f(n):=f_{1}(n) \cdot f_{2}(n)$. Then, $f \in \mathcal{O}(g)$.
h) $n^{1 / a} \in \Theta\left(n^{1 / b}\right)$ for all $a, b \in \mathbb{N}, a \leq b$,

Exercise 1.3 Asymptotic Growth of Functions.

Sort the following functions from left to right such that: if function f is to the left of g, then $f \in \mathcal{O}(g)$.

Example: the functions n^{3}, n^{7}, n^{9} are already in the right order since $n^{3} \in \mathcal{O}\left(n^{7}\right)$ and $n^{7} \in \mathcal{O}\left(n^{9}\right)$.

$$
n^{5}+n, \log \left(n^{4}\right), \sqrt{n},\binom{n}{3}, 2^{16}, n^{n}, n!, \frac{2^{n}}{n^{2}}, \log ^{8}(n)
$$

Hand-in: Wednesday, 2nd March 2016 in your exercise group.

