

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Institut für Theoretische Informatik Peter Widmayer Thomas Tschager 25th February 2016

Datenstrukturen & Algorithmen

Exercise Sheet 1 FS 16

There is a definition of the \mathcal{O} notation that is different from the one given at the lecture. Namely, for a function $g: \mathbb{N} \to \mathbb{R}^+$, let

$$\mathcal{O}(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}, \ \forall n \ge n_0 : f(n) \le cg(n) \}.$$

$$\tag{1}$$

Analogously, we say that a function f grows asymptotically at least as much as g, if $f \in \Omega(g)$ with

$$\Omega(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}, \ \forall n \ge n_0 : f(n) \ge cg(n) \}.$$

$$(2)$$

A function f grows asymptotically like g when $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$. We denote this by $f \in \Theta(g)$, or as $f = \Theta(g)$.

For these exercises, you can choose to use the definition given at the lecture, or use the above definition.

Exercise 1.1 The Set $\Theta(g)$.

Give a counterexample that demonstrates that the right-hand side of the following equation does *not* hold:

$$\Theta(g) = \left\{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}, \ \forall n \ge n_0 : f(n) = cg(n) \right\}$$

Give a correct definition of the set $\Theta(g)$ as compactly as possible (i.e., with the fewest possible parameters and quantifiers), analogously to the above definitions for the sets $\mathcal{O}(g)$ and $\Omega(g)$.

Exercise 1.2 Proofs about O Notation.

Prove or disprove the following statements, where $f, g : \mathbb{N} \to \mathbb{R}^+$.

- a) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$.
- b) If $f \in \mathcal{O}(g)$, then $f(n) \leq g(n)$ for every $n \in \mathbb{N}$.
- c) If $f(n) \leq g(n)$ for every $n \in \mathbb{N}$, then $f \in \mathcal{O}(g)$.
- d) There exist different functions f and g such that $f \in \Omega(g)$ and $g \in \Omega(f)$.
- e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$.
- f) Let $f_1, f_2 \in \mathcal{O}(g)$ and $f(n) := f_1(n) + f_2(n)$. Then, $f \in \mathcal{O}(g)$.
- g) Let $f_1, f_2 \in \mathcal{O}(g)$ and $f(n) := f_1(n) \cdot f_2(n)$. Then, $f \in \mathcal{O}(g)$.
- h) $n^{1/a} \in \Theta(n^{1/b})$ for all $a, b \in \mathbb{N}, a \leq b$,

Exercise 1.3 Asymptotic Growth of Functions.

Sort the following functions from left to right such that: if function f is to the left of g, then $f \in \mathcal{O}(g)$.

Example: the functions n^3 , n^7 , n^9 are already in the right order since $n^3 \in \mathcal{O}(n^7)$ and $n^7 \in \mathcal{O}(n^9)$.

$$n^5 + n, \log(n^4), \sqrt{n}, \binom{n}{3}, 2^{16}, n^n, n!, \frac{2^n}{n^2}, \log^8(n)$$

Hand-in: Wednesday, 2nd March 2016 in your exercise group.