
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Institut für Theoretische Informatik 9th March 2016
Peter Widmayer
Thomas Tschager
Antonis Thomas

Datenstrukturen & Algorithmen Exercise Sheet 3 FS 16

Exercise 3.1 Comparison of Sorting Algorithms.

Let A[1..n] be an array. Consider the following Java implementations of the sorting algorithms
bubble sort, insertion sort, selection sort, and quicksort. These algorithms are called with the
parameters l = 1 and r = n to sort A in ascending order.

public void bubbleSort(int[] A, int l, int r) {
for (int i=r; i>l; i--)

for (int j=l; j<i; j++)
if (A[j]>A[j+1])

swap(A, j, j+1);
}

public void selectionSort(int[] A, int l, int r) {
for (int i=l; i<r; i++) {

int minJ = i;
for (int j=i+1; j<=r; j++)

if (A[j]<A[minJ])
minJ = j;

if (minJ != i)
swap(A, i, minJ);

}
}

public void insertionSort(int[] A, int l, int r) {
for (int i=l; i<=r; i++)

for (int j=i-1; j>=l && A[j]>A[j+1]; j--)
swap(A, j, j+1);

}

public void quicksort(int[] A, int l, int r) {
if (l<r) {

int i=l+1, j=r;
do {

while (i<j && A[i]<=A[l]) i++;
while (i<=j && A[j]>=A[l]) j--;
if (i<j) swap(A, i, j);

} while (i<j);
swap(A, l, j);
quicksort(A, l, j-1);
quicksort(A, j+1, r);

}
}

The function swap(A, i, j) exchanges (swaps) the elements A[i] and A[j]. For each of the
above algorithms, estimate asymptotically both the minimum and the maximum number of
performed swaps and comparisons of elements of A. For each of these cases, give an example
sequence of the numbers 1, 2, . . . , n for which the particular case occurs. The sequence should
be preferably described in such a way that any n can be chosen arbitrarily. For example, the
descending sorted sequence can be described as n, n− 1, . . . , 1.

Exercise 3.2 Algorithm Design: Sums of Numbers.

Let A[1..n] be an array of natural numbers. For each of the following problems, provide an
algorithm that is as efficient as possible, and determine its running time in the worst case.

a) Given a natural number z, does the array A contain two (not necessarily different) entries
a and b such that a+ b = z?

b) Suppose that A is sorted in ascending order. How efficiently can the problem from a) be
solved now? Hint: In this case it is possible to achieve a better running time than in the
previous case.

c) Does the array A contain any three different entries a, b and c such that a+ b = c?

Please turn over.



Exercise 3.3 Blum’s algorithm (Programming Exercise).

In this exercise we are going to implement Blum’s algorithm for median computation. Let
x1, ..., xn be a sequence of n > 5 elements (duplicates allowed). The algorithm finds the k-th
smallest element by performing the following steps.

1) Sequentially, divide the elements into bn5 c groups of 5 elements each and at most one group
containing the remaining n mod 5 elements. That means the first five elements go in the
first group, etc.

2) For each of the above groups, find the median of the group. For a group with 2 elements, the
median is the smaller one, and for a group with 4 elements, the median is the 2nd-smallest
one.

3) Recursively compute the median m among the above medians. This element is called the
median of medians.

4) Use the partition step of quickselect to bring the element m to the correct position pm in
the sorted sequence. Then we have pm − 1 elements on the left of m (with value at most
m), and n− pm elements on the right of m (with value at least m).

5) If k = pm, then we know that the pivot element is on the position we are looking for, and
we return m. If k < pm, then the k-th smallest element is located on the left of m, and we
search recursively for the k-th smallest element among these pm − 1 elements on the left.
Otherwise, k > pm, and we search recursively for the (k − pm)-th smallest element among
the n− pm elements on the right.

Our final goal is to compute the median, i.e. the dn/2e-th element in the sorted sequence. For
the sequence 3, 4, 2, 6, 4, 7, 1, the median is 4.

Input The first line contains only the number t of test instances. After that, we have exactly
one line per test instance containing the numbers n, x1, ..., xn. While n ∈ N, 1 ≤ n ≤ 1000,
describes the number of following integers, xi ∈ Z, −108 ≤ xi ≤ 108 is the i-th number in the
sequence.

Output For every test instance we output only one line. It contains the first sequence of
medians of the groups of at most 5 elements, the first median of medians, and the overall median
of the sequence.

Example

Input:

3
5 1 2 3 4 5
6 7 4 3 2 1 2
13 7 3 5 1 9 8 11 21 4 10 2 6 9

Output:

3 3 3
3 2 2 2
5 10 6 6 7

Hand-in: Wednesday, 16th March 2016 in your exercise group.

2


