Eidgendssische Ecole polytechnique fédérale de Zurich
m Technische Hochschule Politecnico federale di Zurigo

Ziirich Federal Institute of Technology at Zurich
Institut fiir Theoretische Informatik 23rd March 2016
Peter Widmayer
Thomas Tschager
Antonis Thomas

Datenstrukturen & Algorithmen Programming Exercise 4 FS 16

The most straightforward way to solve this exercise is the following: check all the submatrices by
fixing their top left and bottom right cells. There are ©(n*) submatrices for a given n x n matrix.
Then calculate the sum of the entries by just summing them up and find maximum among these
sums for all possible submatrices. Calculating the sum of all entries in a a x b matrix can be
done in ©(ab) time; i.e. the final running time of this algorithm is ©(n®) which is fast enough
for the easy testset.

Calculating the sum of the entries of a fixed submatrix can be done in a constant time by
a simple pre-calculation. For a given matrix A calculate a matrix of partial sums ps where
psli][j] is the sum of entries of a submatrix with top left coordinates (1,1) and bottom right
coordinates (7, 7). Obviously ps[i|[j] = ps[i — 1][j] + ps[i][j — 1] — ps[i — 1][j — 1] + d[i][j] (note
that we subtract ps[i — 1][j — 1] because it is counted twice). This pre-calculation can be done
in ©(n?) time by a simple nested loop. Afterwards, when we fix the top left and bottom right
cells to be at coordinates (i1,51) and (42, j2), the sum of entries in this submatrix is equal to
ps[i2][j2] — ps[il — 1][j2] — ps[i2][j1 — 1] + ps[il — 1][j1 — 1]. This algorithm has a running time
O(n*) and is fast enough for the easy and medium testsets.

As it was hinted, solving this exercise completely requires reduction to the maximum subarray
problem. Fix first and last columns of a target submatrix j1 < j2. We know that a submatrix
is a continuous block of rows, i.e. if we want to find a submatrix of a maximum sum in this

strip of columns then we need to find a maximum subarray of an array sub of partial sums,
where sub[i] = Egz;Qd[z} [7]. Calculation of this array can be done before the main procedure
and precalculation takes ©(n?) time (again, we use the partial sums matrix ps that we describe
in the previous paragraph). The main procedure takes ©(n?) time, where n? comes from fixing

first and last columns and the last n comes from solving the maximum subarray problem.

Implementation

Below are two implementations of the ©(n*) and ©(n?) algorithms. First, the main part of the
O(n*) algorithm:

int [][] partial_sums = new int [n+1][n+1];
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
partial_sums[i][j] = partial_sums[i][j-1]+partial_sums[i-1][j]-partial_sums[i-1][
j-11+d[i-11[j-1];
for (int il=1;il1<=n;il++){
for (int ji=1;ji<=n;ji1++){
for (int i2=i1;i2<=n;i2++){
for (int j2=j1;j2<=n;j2++){
int cur = partial_sums[i2][j2]-partial_sums[i2][j1-1]-partial_sums[il-1][
j2]+partial_sums[i1-1][j1-1];
if (global_max<cur)
global_max = cur;



Implementation of ©(n?) algorithm is given in full extent:
import java.util.Scanner;

class Main{
public static void main(String [] args){
Scanner in = new Scanner (System.in);
int test = in.nextInt();
int i,j;
for (int t=0;t<test;t++){
int n = in.nextInt ();
int[J[] d = new int[n][n];
for (i=0;i<n;i++)
for (j=0;j<n;j++){
d[il[j] = in.nextInt();
}

int global_max=0;
int [J[] partial_sums = new int [n][n];
for (i=0;i<n;i++)
partial_sums[i][0] = d[i]l[0];
for (j=1;j<mn;j++){
for (i=0;i<n;i++){
partial_sums[i]J[j] = partial_sums([i][j-1]1+d[i][j]1;
}

for (int j1=0;jl<mn;jl++){
for (int j2=j1;j2<n;j2++){
int local_max=0;
int [] sub = new int [n];
for (i=0;i<n;i++){
if (j1>0) sub[i] = partial_sums[i][j2]- partial_sums[i][j1-1];
else sub[i] = partial_sums[i][j2];
}
int [] dp = new int [n];
dp [0] = sub[0];
if (local_max<dp[0]) local_max = dpl[0];
for (i=1;i<n;i++){
if (dpl[i-11<=0)
dp[i] = sub[il]; else

dp[i]l = dpl[i-1]+sub[il;
if (local_max<dp[i]) local_max = dpl[il];
}
if (global_max<local_max) global_max = local_max;

}
}
System.out.println(global_max);



