
1 Union bound

A very important tool in discrete probability theory is the so called union bound. This
bound will occur numerous times throughout the course. We state it without giving a
proof here.

Theorem 1. Let (Ω,Pr) be a discrete probability space and let A1, A2, . . . , An ⊆ Ω be
events. Then we have

Pr

[
n⋃
i=1

Ai

]
≤

n∑
i=1

Pr[Ai].

2 Landau Symbols / O-Notation

Throughout the course we will use the so called Landau symbols to describe asymptotic
behavior of functions. For two functions, f, g : N→ R we write

f = O(g) if 0 ≤ lim sup
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ <∞,
f = o(g) or f � g if lim

n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ = 0,

f = Ω(g) if 0 < lim inf
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ ≤ ∞,
f = ω(g) or f � g if lim

n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ =∞,

f = Θ(g) if f = Ω(g) and f = O(n).

An alternative equivalent definition for O,Ω and Θ is

f = O(g) if ∃C > 0, n0 : ∀n ≥ n0 : |f(n)| ≤ C|g(n)|,
f = Ω(g) if ∃c > 0, n0 : ∀n ≥ n0 : |f(n)| ≥ c|g(n)|,
f = Θ(g) if ∃c > 0, C > 0, n0 : ∀n ≥ n0 : c|g(n)| ≤ |f(n)| ≤ C|g(n)|.

2.1 Examples

• 1000n = Θ(n),

• n = o(n1+ε) for every ε > 0,

• n100 = o(log(n)log(n)) since log(n)log(n) = nlog log(n),

• log(n)δ = o(nε) for all constants δ, ε > 0 since log(n)δ = eδ log logn and nε = eε logn,
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• e−
Ω(n)
o(n) = e−ω(1) = o(1), but not (!!) e

O(n)
O(n) = eO(1) = O(1) since the first equality

is not correct since the denominator might be of order of magnitude smaller than
the numerator in which case the exponent tends to infinity! The second equality
is correct though.

3 Law of Total Probability / Law of Total Expectation

A very useful tool in discrete probability are the laws of total probability and total
expectation.

Theorem 2. Let (Ω,Pr) be a discrete probability space and let A1, A2, . . . , An ⊆ Ω be
events that form a partition of Ω, that is, the events are pairwise disjoint and their union
is Ω. Then we have for every event E ⊆ Ω that

Pr[E ] =

n∑
i=1

Pr[E|Ai] Pr[Ai],

and for every random variable X that

E[X] =
n∑
i=1

E[X|Ai] Pr[Ai].

Proof. We first prove that law of total probability. Note that sicne the Ai’s are pairwise
disjoint, the events E ∩A1, . . . , E ∩An are also pairwise disjoint. Hence, we have

n∑
i=1

Pr[E ∩Ai] = Pr

[
n⋃
i=1

E ∩Ai

]
. (1)

With this we can derive

Pr[E ] =

n∑
i=1

Pr[E|Ai] Pr[Ai] =

n∑
i=1

Pr[E ∩Ai]
Pr[Ai]

Pr[Ai]
(1)
= Pr

[
n⋃
i=1

E ∩Ai

]
= Pr[E ],

where the last step follows from the fact that the union of the Ai’s equals Ω.

2



It remains to prove the law of total expecation. We have

n∑
i=1

Pr[Ai]E[X|Ai] =
n∑
i=1

Pr[Ai]
∑
x∈Ω

xPr[X = x|Ai]

=

n∑
i=1

∑
x∈Ω

xPr[X = x|Ai] Pr[Ai]

=
∑
x∈Ω

n∑
i=1

xPr[X = x|Ai] Pr[Ai]

=
∑
x∈Ω

x

n∑
i=1

Pr[X = x|Ai] Pr[Ai]

=
∑
x∈Ω

x
n∑
i=1

Pr[X = x ∧ Ai]

=
∑
x∈Ω

xPr[X = x] = E[X].
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4 Useful Inequalities

Inequality 3. For all x ∈ R we have

1− x ≤ e−x.

Proof. We just give an informal picture proof.
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Inequality 4. For all n ∈ N, k ∈ N0 with k ≤ n we have

(i)
(
n
k

)
≤ 2n,

(ii)
(
n
k

)
≤ nk

k! , and

(iii)
(
n
k

)k ≤ (nk) ≤ (nek )k.
Proof. (i) We have (

n

k

)
≤

n∑
i=0

(
n

k

)
= 2n.

(ii) We have (
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
.

(iii) We first
(
n
k

)
≥ (n/k)k. We have(

n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1
=

k−1∏
i=0

n− i
k − i

≥
(n
k

)k
,

where the last inequality follows from the fact that for every k ≤ n we have (n −
i)/(k − i) ≥ n/k. It remains to show

(
n
k

)
≤ (ne/k)k. We have

ek =

∞∑
i=0

ki

i!
≥ kk

k!
=
n(n− 1) · · · (n− (k − 1))

k!
· kk

n(n− 1) · · · (n− (k − 1))
≥
(
n

k

)(
k

n

)k
,
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which immediately implies the claim.

Inequality 5. Let Hn =
∑n

i=1
1
i denote the n-th harmonic number. Then we have

lnn ≤ Hn ≤ lnn+ 1.

Proof. Recall that ln =
∫ n

1 1/xdx. The following picture illustrates that Hn ≤ ln(n) + 1
and, by shifting the 1/x-curve one unit to the left, that ln(n− 1) ≤ Hn.
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In fact, one can show that Hn = lnn + γ + O(n−1) where γ ≈ 0.5772 denotes the
Euler-Mascheroni constant.
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