
Algorithmic Game Theory Summer 2016, Week 10

Best-Response Mechanisms II

(TCP, Stable Matching, Single Item Auction)

ETH Zürich Paolo Penna

In this lecture we give three more applications of best-response mechanisms:

• The TCP protocol for congestion control (why it stabilizes and why users find it
convenient to follow the protocol).

• Stable Matching (we re-obtain incentive compatibility of Proposal Mechanism)

• Second-Price Auction (we re-obtain truthfulness by viewing it as repeated First-
Price auction).

Because the framework applies to asynchronous settings (players do not necessarily move
one by one), in each application we get a ‘distributed version’ of the previous mechanisms.

1 Best-Response Mechanisms (previous lecture)

Let us recall the basic definitions we introduced in the previous lecture on best-response
mechanisms.

Base game G =⇒ Repeated game G∗

si ∈ Si response strategy Ri() ∈ Si

ui(s) total utility Γi := lim sup
t→∞

ui(s
t)

Definition 1. Best-response are incentive compatible for G if repeated best-
responding is a Nash equilibrium for the repeated game G∗, that is, for every i

Γi ≥ Γ′i

where Γi i the total utility when all players best respond and Γ′i is the total utility
when all but i best respond (starting from the same initial profile s0 and applying
the same activation sequence).

We have seen the following result in the previous lecture.

Theorem 2. If the base game is NBR-solvable with clear outcome (according to a pre-
scribed tie breaking rule ≺), then best response converge and are incentive compatible.

This is how these results can be used.

Best-Response Mechanism

Design a game (rules) that satisfy the two conditions of Theorem 2.
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2 TCP Games

The Transmission Control Protocol (TCP) is used to reduce congestion in the Internet
and it is run on each computer (sender). We describe the protocol by consider the
following example. Two players want to send data through a link of a certain capacity
C.

C

1

2

1′

2′

s1

s2

r1

r2
dropped packets

Roughly, the protocol prescribes to adjust the sending rate (number of packets per unit
of time) according to these simple rule:

1. No packet loss ⇒ increase your rate;

2. Packet loss ⇒ decrease your rate.

We view this scenario as the following game. Each sender is a player, who can select a
sending rate si (the strategy of player i) in an interval [0,Mi], and the channel policy (if
capacity is exceeded some packets are dropped) determines the actual rate ri for each
player (this amount is the payoff of player i). The quantity Mi represents the maximum
rate that i is interested in achieving.

The following is an abstract view of what TCP prescribes to do:

Probing Increase Educated Decrease (PIED): Send exactly at the maximum
rate that you can get (not more than that).

After gradually increasing the sending rate, at some point some packets are dropped.
This is a way for player i to learn the maximum rate he/she can get without packets
being dropped. PIED prescribes to send at this maximum rate, that is, to play

s∗i := max{si ∈ [0,Mi]| ri(si, s−i) = si},

where the actual rate ri() depends on the channel policy. There are two natural questions
we may ask:

1. If all users run PIED, will the traffic rate stabilize?

2. Are users incetivized to run PIED?

Exercise 1. Explain why PIED is not incentive compatible if the channel policy is to
divide the total capacity proportionally to the sending rate of the player (whenever their
requests exceed C):

ri = C
si∑
j sj

.
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We introduce a channel policy that makes PIED incentive compatible and uses the
whole channel capacity:

Strict Priority Queuing: Try to satisfy the players requests one-by-one in a
fixed order:

r1 ← min(s1, C)

r2 ← min(s2, C − r1)

...

rn ← min(sn, C − r1 − r2 · · · − rn−1)

Theorem 3. If the channel uses a Strict Priority Queuing policy then PIED converges
and is incentive compatible.

Proof. We show that the base game is NBR-solvable with clear outcome. The elimination
sequence follows the priority order of Strict Priority Queuing: set

s∗1 ← min(M1, C)

s∗2 ← min(M2, C − s∗1)

...

s∗n ← min(Mn, C − s∗1 − s∗2 · · · − s∗n−1)

and each player i eliminates all strategies different from s∗i in the order above

Ei = {si 6= s∗i } .

To see that this sequence defines an NBR-solvable with clear outcome game we observe
the following:

1. Define subgame Gi as the subgame where all players before i have already eliminated
their strategies E1, . . . , Ei−1. So G1 is the original game.

2. In subgame Gi the highest rate available to i is C − s∗1 − s∗2 − · · · − s∗i−1. Since i
wants to send at most Mi, strategy s∗i guarantees i the highest possible payoff in
this subgame,

min(Mi, C − s∗1 − s∗2 − · · · − s∗i−1)

3. Sending with rate smaller than s∗i results in worse payoff for i, and sending with
higher rate is not better than s∗i . Here we use a simple tie-breaking rule, namely

Prefer smaller sending rate over higher sending rate.

Then the two cases in Definition 9 correspond to si < s∗i and si > s∗i respectively.
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Fair Queuing:

1. Allocate the capacity C evenly among all sending “requests”

ri ← min(si, C/n)

2. Recursively allocate the residual capacity among all partially satisfied re-
quests as in previous step:

C ← C −
∑
i

ri si ← si − ri.

For instance, with C = 60 and

s1 = M1 = 30 s2 = M2 = 40 s3 = M3 = 10

we initially allocate 60/3 = 20 (or less) to each player,

r1 = 20 r2 = 20 r3 = 10

because player 3 does not want more than M3 = 10. The remaining capacity C ′ = 10 is
divided equally among the first two:

r1 = 20 + 5 r2 = 20 + 5 r3 = 10 .

Exercise 2. Show that if the channel uses a Fair Queuing policy then PIED converges
and is incentive compatible.

3 Stable Matchings

The general version of the problem considers n players, each of them having preferences
over the others. A stable matching is a matching such that there are no two players
who prefer each other to their matched partners, that is, nothing like this should happen:

i

j

i′

j′

prefer j to i′

prefer i to j′

Exercise 3. Show that in general graphs a stable matching may not exist.

Example 4 (Interns-Hospitals). Consider following bipartite restriction of the problem.
Players are partitioned into interns and hospitals:

• Hospitals have a common (same) rank of interns,

i1 � i2 � · · · � in

Version : November 28, 2016 Page 4 of 8



Algorithmic Game Theory, Summer 2016 Week 10

• Interns rank hospitals differently (e.g., based on salary, location, etc.). So each
intern has his/her own (private) rank ≺i over the hospitals.

An intuitive mechanism would be to let players propose to the others. A player i
makes a better offer to j if i proposes to j and j prefers i over all players that
currently propose to j. Then a player should try to make a better offer to the player
he/she likes the most:

Best-Response Mechanism for Stable Matching:

• Each player checks which players he/she can make a better offer to, and then
proposes him/herself to the most preferred one in this set.

One can view the above mechanism as best-responding in the following stable match-
ing game:

ui(s) =

{
ranki(si) if i makes a better offer to si

0 otherwise
(1)

where ranki(si) is the natural translation of ranks (≺i) into utilities: 0 to the least
preferred option, 1 to the second-least-preferred, and so on.

Theorem 5. The Best-Response Mechanism for Stable Matching converges and is incen-
tive compatible for the interns-hospitals matching problem in Example 4.

Proof. There is a very natural elimination sequence showing that the base game defined
by the utilities (1) is NBR-solvable with clear outcome:

• Follow the global order in which interns are ranked by the hospitals,

i1, i2, . . . , in

where i1 is the top-ranked intern for all hospitals.

• At stage t, intern it proposes to his/her top-ranked hospital, among those that are
still available (not taken by prior interns).

Intuitively, at each step t, intern it gets the best hospital, among those currently still
available. Formally, we observe the following things:

• Because of the global rank of hospitals, it cannot get any of the previously taken
hospitals (the utility (1) is 0 because it would not make a better offer to such
hospitals);

• Because of the global rank of hospitals, it can for sure get any of the non-taken
hospitals (the utility (1) is nonzero because it makes a better offer for any such
hospitals);

Let s∗t be the top-ranked hospital for it among those that are not previously taken. Then,
the previous two items say that all other strategies are NBR in this subgame (only non-
taken hospitals available). The clear outcome comes directly from the last item since s∗t
guarantees it the highest payoff in this subgame.
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Incentive compatible here means that it is always convenient to the player to best-
respond according to his/her true rank in every iteration. As a corollary we re-obtain
the incentive compatibility of the Proposal Algorithm for stable matching in previous
lectures.

Corollary 6. The Proposal Mechanism is incentive compatible.

Proof. The Proposal Mechanism corresponds to the Best-Response Mechanism above in
which players are activated in some order (not important which one).

If the Proposal Mechanism was not incentive compatible, then some player may find
it convenient to misreport his/her true preference ≺i to some ≺′i.

This would mean that in the Best-Response Matching Mechanism this player would
improve by repeatedly responding as if her preferences were ≺′i, thus not best responding
according to ≺i.

Example 7 (Correlated Markets). We have a complete weighted graph. Each player
(node) prefers neighbors whose edges weights are higher.

1 3

4
8

2

10

3

5

12

7

1st

2nd

The instances described in the previous exercise satisfy the following definition:

Acyclic Instances: There is no cycle of ` ≥ 3 players

i1 → i2 → · · · → i` → i1

such that each player prefers the next one over the previous one.

Exercise 4. Prove that for acyclic instances the Best-Response Matching Mechanism
above converges and is incentive compatible (no player can get matched to a player he/she
likes more by misreporting her preferences).

4 Single Item Auction

We run an auction for selling an item to the players, each player has his/her own valuation
vi for the item. Consider the 2nd-price auction in which the highest bid wins the item
and the price to pay is the 2nd-highest bid. For example

bids : 1, 5︸︷︷︸
pays 3

, 3
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The utility of the winner equals to the difference between the valuation and the price
to pay (the others have zero utility). This auction “simulates” a repeated 1st-price
auction:

bid1 = 0.1→ bid2 = 0.2→ · · · → bid3 = 3→ bid2 = 3.000001

where the winner pays his/her final bid.

Exercise 5. Consider two bidders having different valuations and the case bids/valuations
are discrete (integers). Describe repeated 1st-price auction as a best-response dynamics
and prove that it converges and is incentive compatible. Explain how you can deduce from
this that 2nd-price auction is truthful (reporting a bid different from the true valuation
does not improve the utility of the corresponding player).

Recommended Literature

The three applications presented here are discussed in the same work introducing the
best-response mechanisms:

• Noam Nisan, Michael Schapira, Gregory Valiant, and Aviv Zohar. Best-response
mechanisms. In Innovations in Computer Science (ICS), pages 155–165, 2011.

More issues on TCP games are described in this work:

• P. Brighten Godfrey, Michael Schapira, Aviv Zo- har, and Scott Shenker. Incentive
compatibility and dynamics of congestion control. SIGMETRICS Perform. Eval.
Rev. , 38(1):95–106, 2010.

(the setting on general graphs and the need of ‘consistent’ policies over all edges)

Applications of best-response mechanisms to auctions are in this work:

• Noam Nisan, Michael Schapira, Gregory Valiant, and Aviv Zohar. Best-response
auctions. In ACM conference on Electronic commerce, pp. 351-360. ACM, 2011.

(why best-response and the importance of incentive compatibility)
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A Definitions from previous lecture

Definition 8 (never best response (NBR)). A strategy si ∈ Si is a never best response
(for tie breaking rule ≺) if there is always another strategy that gives a better payoff or
that gives the same payoff but is better w.r.t. to this tie breaking rule: for all s−i there
exists s′i ∈ Si such that one of these holds

1. ui(si, s−i) < ui(s
′
i, s−i) or

2. ui(si, s−i) = ui(s
′
i, s−i) and si ≺i s

′
i.

Definition 9 (NBR-solvable). A game G is NBR-solvable if iteratively eliminating NBR
strategies results in a game with one strategy per player. That is, there exists a tie
breaking rule ≺, sequence p1, . . . , p` of players, and a corresponding sequence of subsets
of strategies E1, . . . , E` such that:

1. Initially G0 = G and Gi +1 is the game obtained from Gi by removing the strategies
Ei of player pi;

2. Strategies Ei are NBR for ≺ in the game Gi−1.

3. The final game G` has one strategy for each player (this unique profile is thus a
PNE for G).

A sequence of players and of strategies as above is called an elimination sequence for the
game G.

Definition 10 (NBR-solvable with clear outcome). A NBR-solvable game G has a clear
outcome if there exists a tie breaking rule ≺ such that the following holds. For every
player i there exists an elimination sequence consisting of players p1, . . . , pa, . . . , p` and
strategies E1, . . . , Ea, . . . , E` (according to Definition 9) such that,

1. pa denotes the first appearance of i in the sequence, that is,

pa = i 6= p1, p2, . . . , pa−1;

2. in the corresponding subgame

Ga−1 = G \ (E1 ∪ E2 ∪ · · · ∪ Ea−1)

the PNE s∗ is globally optimal for i, that is,

ui(ŝ) ≤ ui(s
∗) for all ŝ ∈ Ga−1.

(Recall that s∗ is the unique profile in the final subgame G`.)
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