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This is the lecture where we start designing systems which involve selfish players. Roughly
speaking, we consider two approaches:

• Suggest the players the best possible equilibrium, and measure how well this ap-
proach performs (Price of Stability);

• Provide compensations to the players to induce them to to behave in a desirable
way (Mechanism Design).

1 Price of Stability

Example 1 (necessity of payment rules). In this graph, each edge can be built at a cost
of 1. Each player i wants to go from si to ti, and can pay a part of the cost for building
the necessary edges.

s1 s2

t2 t1

An edge exists if its cost is covered. If a player cannot connect to its target node ti then
he/she has a huge cost. The strategy of a player i is to specify, for each edge e, how much
he/she contributes (the cost for the player is his/her total contribution).
This game has no pure Nash equilibria (Exercise!).

The above example suggests that we need rules on how the cost of an edge is shared
among the players that use it. A natural scheme is to divide the cost of an edge equally
among those that use it. This leads to so-called fair cost sharing games, which are
congestion games with ‘delays’

dr(x) = cr/x

where cr ≥ 0 is the cost for building resource r. We have n players and m resources.
Player i selects some resources, i.e., his strategy set is Si ⊆ [1, . . . ,m]. The cost cr is
assigned in equal shares to the players allocating r (if any). That is, for strategy profile
s denote by nr(s) the number of players using resource r. Then the cost ci(s) of player i
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is ci(s) =
∑

r∈si dr(nr(S)) =
∑

r∈si ci/nr(s). As in the previous lectures, the social cost
of a state s is the sum of all players’ costs

cost(s) =
∑
i

ci(s).

Social cost = Costs of used resources

cost(s) =
∑
i

ci(s) =
∑

r: nr(s)≥1

cr . (1)

Here is the simple proof:

cost(s) =
∑
i

ci(s) =
∑
i

∑
r∈si

dr(nr(s)) =
∑

r: nr(s)≥1

nr(s) · cr/nr(s) =
∑

r: nr(s)≥1

cr .

The price of anarchy for pure Nash equilibria can be as big as the number of players n,
even in a symmetric game.

Example 2 (Lower bound on price of anarchy). For ε > 0, consider the following network
cost sharing game, in which edge labels indicate the cost cr of this resource:

s t

1 + ε

n

It is a pure Nash equilibrium if all players use the bottom edge, whereas the social optimum
would be that all users use the top edge.

Although this is a very stylized example, there are indeed examples of such bad
equilibria occurring in reality. A prime example are mediocre technologies, which win
against better ones just because they are in the market early and get their share. As
a concrete example consider social networks or messaging services. Even if you were to
design and code-up a revolutionary new social network or messaging service, would people
actually switch over from, say, Facebook or Whatsapp, if all their friends are using it?

1.1 Best Equilibria and Price of Stability

Let us first turn to the price of stability, which compares the best equilibrium with the
social optimum. We can see this this concept in two ways:

• Try to reduce the negative effect of selfish behavior by suggesting a good equilibrium
to the players (rather than let them compute an equilibrium by themselves);

• Understand if the inefficiency loss is just a question of equilibrium selection, or it
is intrinsic in the fact that players will always play some equilibrium.

Version : October 17, 2016 Page 2 of 10



Algorithmic Game Theory, Summer 2016 Week 4

Definition 3 (Price of Stability). For a cost-minimization game, the price of
stability for Eq is defined as

PoAEq =
minp∈Eq cost(p)

mins∈S cost(s)
,

where Eq is a set of probability distributions over the set of states S, and cost(p)
is the expected social cost of p.a

aRecall definition from previous lectures: cost(p) := Es∼p[cost(s)] =
∑

s∈S p(s)cost(s) .

Exercise 1. Prove that in a symmetric cost sharing game every social optimum is a pure
Nash equilibrium. Therefore, the price of stability for pure Nash equilibria is 1.

In asymmetric games this is no longer true as the social optimum is not necessarily a
pure Nash equilibrium.

Example 4 (Lower bound on price of stability). Consider the following game with n
players. Each player i has source node si and destination node t.

s1 s2 s3 · · · sn

t

v

1 1
2

1
3

1
n

0 0 0 0

1 + ε

A player has two possible strategies: Either take the direct edge or take the detour via v.
The social optimum lets all players choose the indirect path, which leads to a social cost
of 1 + ε. This, however, is not a Nash equilibrium. Player n, who currently faces a cost
of (1 + ε)/n, would opt out and take the direct edge, which would give him cost 1/n.

Therefore, the only pure Nash equilibrium lets all players choose their direct edge,
yielding a social cost of Hn, where Hn =

∑n
i=1

1
i

= 1 + 1
2

+ 1
3

+ . . . + 1
n

is the n-th
harmonic number. We have Hn = Θ(log n).

Theorem 5. The price of stability for pure Nash equilibria in fair cost sharing games is
at most Hn.

Proof. Let us first derive upper and lower bounds on Rosenthal’s potential function that
apply to any state s, whether at equilibrium or not.
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To obtain an upper bound we can use the definition of the potential function and the
fact that each resource is used by no more than n players:

Φ(s) =
∑
r

nr(s)∑
k=1

cr
k

=
∑

r: nr(s)≥1

cr ·
(

1 +
1

2
+

1

3
+ · · ·+ 1

nr(s)

)
(2)

≤
∑

r: nr(s)≥1

cr · Hn

= cost(s) · Hn .

As for the lower bound, each term in the right hand side of (2) is at least cr, thus

Φ(s) ≥
∑

r: nr(s)≥1

cr = cost(s) .

Now let s′ be a state minimizing the potential, and s∗ be a state minimizing the social
cost. By definition, Φ(s′) ≤ Φ(s∗), thus implying

cost(s′) ≤ Φ(s′) ≤ Φ(s∗) ≤ cost(s∗) · Hn .

Note that s′ must be a pure Nash equilibrium (because it is a local minimum for the
potential). This proves that there is a pure Nash equilibrium s′ that is only a factor of
Hn more costly than s∗.

We conclude that in both symmetric and asymmetric cost sharing games our assump-
tion that players play an equilibrium has a rather mild impact. The possible source of
inefficiency is the fact that players may not be able to select a particularly good equilib-
rium.

Another use of Potential: bound the price of stability

Theorem 6. In a cost-minimization potential game, if s′ is a state minimizing the po-
tential, then

PoS ≤ cost(s′)

mins∈S cost(s)
.

Proof. In potential games every state which is a local minimum for the potential is a pure
Nash equilibrium (in particular, the global minimum s′).

2 Introduction to Mechanism Design

In this section we introduce mechanisms with money. The main idea is that we
provide compensations to the player in order to induce them to behave as we desire.

Version : October 17, 2016 Page 4 of 10



Algorithmic Game Theory, Summer 2016 Week 4

2.1 Examples and Main Intuitions

Problem (2 Links, 1 Packet)

c1

c2
s t

We want to select the best (minimum cost), but the following complication arises:

• Each link is a player i and ci is the latency that this link ‘suffers’ if we use it for
sending our message;

• We do not know ci and we thus have to ask the player to report to us its cost;

• Players can cheat and report a cost which is different from the true one.

The reason for a player i to cheat is simple: if its link is selected, then the player has a
cost ci, while if its link is not selected, there is no cost for the player. For instance, if
these were the true costs:

s t
5

3

the top player has an incentive to declare a higher cost (say 6) so that our algorithm
selects the other link. It is therefore natural to introduce compensations or payments.

First attempt: Pay the reported cost

Suppose we ask each player what is the cost of its link, and we provide that amount of
money as compensation. Now the top link still has a reason to cheat: by reporting 4.99
he/she can get a higher payment (can speculate). Consider his utility in the two cases:

• Truth-telling (report 3): receives 3 as payment, and has cost 3 for being selected;

Utility = Payment - Cost = 3− 3 = 0.

• Cheating (report 4.99): receives 4.99 as payment, and has cost 3 for being selected.

Utility = Payment - Cost = 4.99− 3 > 0.

Surprisingly there are payments that always induce the players to tell the truth. The
idea comes from the following type of auctions for selling one item to potential buyers.

2nd Price Auction (Vickrey)

1. Pick the highest offer (bid)

2. The winner pays the 2nd-highest offer
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In this auction, each buyer sends his/her offer in a sealed envelope, and the winner
is determined as above. Here buyers have a private valuation for the item, and they
naturally try to get the item for a lower price (utility = valuation − price). For example:

Bids: 7, 10, 3
Winner: second player
Price: 7

Note for instance, that the second buyer cannot get the item for a better price, e.g., by
bidding 8; bidding 6 would make this buyer to lose the auction.

This translates immediately into the following solution for our problem:

Second Attempt (Vickrey auction):

1. Select the best link (min reported cost)

2. Pay this link an amount equal to the 2nd-best cost

s t
5

3
pick top link
pay 5

One can argue on this example that neither player can improve his/her utility by cheating.
In fact this is true no matter which were the true costs of the two links. We prove this
and more general results below. Now we want to build some intuition and generalize this
problem.

Observation 7. In the example above, if we were paying the reported cost, the maximum
this agent could speculate is 5 (the cost of the other link). To prevent him from cheating,
we pay directly this amount to him/her.

Let us consider the same problem, just slightly more general.

Problem (Shortest Path)

s t

3 1

10

Imagine we pay each selected link an amount equal to the maximum he/she could spec-
ulate if the payment was the reported cost:

s t

3 1

10

pay = 10− 1 = 9 pay = 10− 3 = 7
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which can be also seen as follows,

Alternative shortest path10

13
Shortest path

Payment (agent of cost 1)

This is perhaps the main intuition we use in a general construction described in Sec-
tion 2.3.

2.2 Formal Setting

We consider the following setting.

• A is a set of feasible alternatives (or solutions)

• Each player i has private true cost function ti : A → < which gives his/her
cost for every possible alternative,

ti(a).

• Player i can misreport his/her true cost to some other cost function ci : A →
<.

• If agent i receives a payment pi and alternative a is chosen, then his/her
utility is

pi − ti(a).

A mechanism is a combination of an algorithm selecting a solution and a payment
rule assigning payments to each agent. The mechanism takes in input the costs reported
by the players.

A mechanism is a pair (A,P ) which on input the costs c = (c1, . . . , cn) reported
by the players, outputs

• A solution A(c) ∈ A;

• A payment Pi(c) for each player i.

The corresponding utility for each agent i is

ui(c|ti) := Pi(c)− ti(A(c)).

What we want is that cheating is never convenient for a player. That is, truth-telling
is a dominant strategy.
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A mechanism (A,P ) is truthful if

ui(c1, . . . , ci−1, ti, ci+1, . . . , cn|ti) ≥ ui(c1, . . . , ci−1, ci, ci+1, . . . , cn|ti) (3)

for all i, for all ti︸︷︷︸
true cost

, for all c1, . . . , ci−1, ci+1, . . . , cn︸ ︷︷ ︸
costs reported by others

, and for all ci︸︷︷︸
cost reported by i

.

2.3 VCG Mechanisms

We next present a very general construction of truthful mechanisms which will solve the
shortest-path problem as a special case. Intuitively, the mechanism does the following:

• Compute the solution minimizing the social cost (sum of players costs) with respect
to the reported costs (algorithm);

• Pay each agent his/her “marginal contribution” to this solution (payments). This
part uses the intuition described at the end of Section 2.1.

Let us consider the social cost of a solution a with respect to costs c = (c1, . . . , cn) as

cost(a, c) :=
∑
i

ci(a)

and let us denote the optimum as

opt(c) := min
a∈A

cost(a, c).

A VCG mechanism is a pair (A,P ) such that

• A in an optimal algorithm:

cost(A(c), c) = opt(c) for all c;

• P is of the following form:

Pi(c) = Qi(c−i)−
∑
j 6=i

cj(A(c))

where Qi is an arbitrary function independent of ci.

This construction yields truthful mechanisms:

Theorem 8 (Vickrey-Clarke-Groves). VCG mechanisms are truthful.

Proof. Fix an agent i, and the costs c−i reported by the others. Let

t̃ := (c1, . . . , ci−1, ti, ci+1, . . . , cn)

be the vector in which i is truth-telling.

Version : October 17, 2016 Page 8 of 10



Algorithmic Game Theory, Summer 2016 Week 4

Claim 9. The utility of i for t̃ is

ui(t̃|ti) = Qi(c−i)− opt(t̃).

Proof. By definition of the payments

ui(t̃|ti) = Pi(t̃)− ti(A(t̃)) =Qi(c−i)−

(∑
j 6=i

cj(A(c)) + ti(A(t̃))

)

Observe that for any solution a ∈ A∑
j 6=i

cj(a) + ti(a) =c1(a) + · · ·+ ci−1(a) + ti(a) + ci+1(a) + · · ·+ cn(a)

=cost(a, t̃).

Therefore

ui(t̃|ti) = Qi(c−i)− cost(A(t̃, t̃)) = Qi(c−i)− opt(t̃).

This proves the claim.

Claim 10. The utility of i for c is

ui(c|ti) = Qi(c−i)− cost(A(c), t̃).

Proof. The same proof of the previous claim with ci in place of ti yields the desired
result.

Now truthfulness is immediate from the two claims: since by definition of opt

opt(t̃) ≤ cost(A(c), t̃)

we get
ui(t̃|ti) = Qi(c−i)− opt(t̃) ≥ Qi(c−i)− cost(A(c), t̃) = ui(c|ti).

Exercise 2. Show that the mechanisms for shortest-path problem in Section 2.1 is VCG
mechanism (and thus truthful no matter the costs of the edges). Describe the mechanism
on general graph, assuming that the graph given is 2-connected (removing one edge never
disconnects the graph). What is the function Qi()?

Exercise 3. The above theorem is a weaker form of the original VCG theorem. Prove
that the following weaker condition on the algorithm is sufficient. There exists a subset
R ⊂ A of solutions such that A is optimal with respect to this fixed subset of solutions.
That is, for every c

• A(c) ∈ R;

• cost(A(c), c) = mina∈R cost(a, c).
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2.4 Longest Path

We conclude by describing a simple problem which does not have a truthful mechanism,
no matter how clever or complicated we make the payments.

Longest Path: Find the longest path (instead of shortest-one)

s t
5

3

selected

s t
5

6

selected

Consider the top link, and any payment Pi for it. Truthfulness would require to deal with
both these cases:

1. (true cost = 3, false cost = 6):

Pi(3, 5)− 0 ≥ Pi(6, 5)− 3

2. (true cost = 6, false cost = 3):

Pi(6, 5)− 6 ≥ Pi(3, 5)− 0

which cannot be both satisfied. So there is no truthful mechanism (A,P ) for this problem.

Recommended Literature

For the Price of Stability see

• Chapter 17.2.2 and Chapter 19.3 in Algorithmic Game Theory, N. Nisan et al.,
pages 79–101, 2007.

For truthful mechanisms with money (VCG):

• Chapter 9 in Algorithmic Game Theory, N. Nisan et al., pages 79–101, 2007.
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