A. Mamageishvilli, P. Penna, P. Uznanski

October 3, 2016 Deadline: Beginning of next lecture

Algorithmic Game Theory Fall 2016

Exercise Set 2

Exercise 1:

(3 Points) For every $M \geq 1$, give an example of a two-player network congestion game whose price of anarchy for pure Nash equilibria is at least M.

Exercise 2:

Fair cost sharing games are congestion games with delay functions of the form

$$d_r(x) = c_r/x$$

where c_r is a positive constant. (In these games, c_r represents the cost for building resource r, and this cost is shared equally among the players using this resource.)

- (a) Show that fair cost sharing games with n players are (n, 0)-smooth.
- (b) For every n, give an example of a fair cost sharing game with n players whose price of anarchy for pure Nash equilibria (PoA) is at least n.

Exercise 3:

An ϵ -Nash equilibrium is a state $s \in S$ such that

$$c_i(s)(1-\epsilon) \le c_i(s'_i, s_{-i})$$

for all players i and for all $s'_i \in S_i$. Prove that in congestion games with affine delay functions the cost of any ϵ -Nash equilibrium is at most $\frac{5}{2-3\epsilon}$ times the optimal social cost. (The social cost is the sum of all players' costs.)

Exercise 4:

In this exercise we consider *load balancing games*: There are *m* machines of identical speeds. Player i is in charge of one job of weight $w_i > 0$. Every player may choose a machine to process this job; his strategy set is therefore $\{1, \ldots, m\}$. Player *i*'s cost in state *s* is given as

$$c_i(s) = load_{s_i}(s) := \sum_{i':s_{i'}=s_i} w_{i'}$$
 .

(Note that this is the load of the machine chosen by i, including w_{i} .) Prove that every pure Nash equilibrium is a local minimum for the function f given by the sum of the squares of the machine loads:

$$f(s) = \sum_{\ell=1}^{m} \left(load_{\ell}(s) \right)^2.$$

(3 Points)

(3 Points)

(3 Points)

Explain how this implies that a pure Nash equilibrium exists. Does f satisfy the definition of potential game given in the lecture (Lecture 2)?

Exercise 5:

(3 Points)

Consider again load balancing games introduced in the previous exercise. Now define the cost of a strategy profile as the *maximum load* among all machines:

$$cost(s) = \max_{\ell \in \{1,\dots,m\}} load_{\ell}(s) \quad .$$

$$\tag{1}$$

Show that in these games $PoA \leq 2$ for any number *m* of machines, where PoA is the price of anarchy for pure Nash equilibria defined with respect to the cost function in (1).

Exercise 6:

(4 Points)

Prove that computing pure Nash equilibria in congestion games remains PLS-complete also when we restrict to **affine delay functions**. That is, for $d_r(x) = a_r x + b_r$ with $a_r, b_r \ge 0$.