A. Mamageishvilli, P. Penna, P. Uznanski

October 17, 2016 Deadline: Beginning of next lecture

Algorithmic Game Theory Fall 2016

Exercise Set 4

Exercise 1:

Consider the following fair cost-sharing game:

c_4

Each player i wants to be connected from s_i to t, and the edges are **undirected**. That is, two or more players can use the same edge e in different directions, and they all share equally the cost c_e of this edge.

Prove that the price of stability for pure Nash equilibria is at most 2 in this game. (In fact, you can consider any ring with n players.)

Exercise 2:

Consider this symmetric network congestion game with two players:

- (a) What are the price of anarchy and the price of stability for pure Nash equilibria?
- (b) What are the price of anarchy and the price of stability for mixed Nash equilibria? **Hint:** Start by listing all mixed Nash equilibria. To obtain these start with a sentence like, "Let σ be a mixed Nash equilibrium with $\sigma_1 = (\lambda_1, 1 - \lambda_1), \sigma_2 = (\lambda_2, 1 - \lambda_2)$," and continue by deriving properties of λ_1 and λ_2 .
- (c) What is the best price-of-anarchy bound that can be shown via smoothness?

Exercise 3:

Consider the following variant of the shortest path mechanism design problem. Each player may own more than one edge:

(3 Points)

(1+2+1 Points)

(2+2+1 Points)

The feasible solutions consist of the paths connecting s to t, and the cost for a player is given by the sum of the costs of his/her edges in the chosen path. For example, the path $s \rightarrow u \rightarrow v \rightarrow t$ has costs to player 1 equal to $t_1 + t_3$, while $s \rightarrow u \rightarrow t$ costs him/her t_1 .

- 1. Describe a truthful mechanism computing the shortest path in this graph. Note that the mechanism knows which edges belong to which player. A player can misreport the cost of his/her edges.
- 2. Make sure that your mechanism on this particular graph satisfies voluntary participation: if a player is truth-telling, then his/her utility is non-negative (prove it).
- 3. Write the payments of your mechanism when the reported/true costs are as follows:

Exercise 4:

(3 Points)

Consider the following mechanism design problem. We have three jobs of size J_1 , J_2 , J_3 , and two machines of cost t_1 and t_2 , respectively. The players are the machines: player *i* has cost $load_i \cdot t_i$, where $load_i$ is the sum of the jobs size allocated to this machine, and players can report a cost $c_i \neq t_i$.

Suppose we allocate jobs using a **greedy algorithm** $A_{greedy}(c_1, c_2)$:

1. The current job J_k is allocated to machine 1 if

$$(load_1 + J_k) \cdot c_1 \leq (load_2 + J_k) \cdot c_2$$

where $load_1$ and $load_2$ are the current loads of the two machines (the loads given by the jobs allocated so far).

2. Else J_k is allocated to machine 2.

Prove that there is no truthful mechanism (A_{greedy}, P) . **Hint:** Consider jobs of size $J_1 = 3$, $J_2 = 2$, $J_3 = 2$, and two input costs, $(c_1, c_2) = (1, 1 - \epsilon)$ and $(c'_1, c'_2) = ((1 - \epsilon)^2, 1 - \epsilon)$.