Algorithmic Game Theory

Fall 2016
Exercise Set 4

Exercise 1:

(3 Points)
Consider the following fair cost-sharing game:

Each player i wants to be connected from s_{i} to t , and the edges are undirected. That is, two or more players can use the same edge e in different directions, and they all share equally the cost c_{e} of this edge.

Prove that the price of stability for pure Nash equilibria is at most 2 in this game. (In fact, you can consider any ring with n players.)

Exercise 2:

(1+2+1 Points)
Consider this symmetric network congestion game with two players:

(a) What are the price of anarchy and the price of stability for pure Nash equilibria?
(b) What are the price of anarchy and the price of stability for mixed Nash equilibria?

Hint: Start by listing all mixed Nash equilibria. To obtain these start with a sentence like, "Let σ be a mixed Nash equilibrium with $\sigma_{1}=\left(\lambda_{1}, 1-\lambda_{1}\right), \sigma_{2}=\left(\lambda_{2}, 1-\lambda_{2}\right)$," and continue by deriving properties of λ_{1} and λ_{2}.
(c) What is the best price-of-anarchy bound that can be shown via smoothness?

Exercise 3:
$(2+2+1$ Points $)$
Consider the following variant of the shortest path mechanism design problem. Each player may own more than one edge:

- player 1
- player 2
* player 3

The feasible solutions consist of the paths connecting s to t, and the cost for a player is given by the sum of the costs of his/her edges in the chosen path. For example, the path $\mathrm{s} \rightarrow \mathrm{u} \rightarrow \mathrm{v} \rightarrow \mathrm{t}$ has costs to player 1 equal to $t_{1}+t_{3}$, while $\mathrm{s} \rightarrow \mathrm{u} \rightarrow \mathrm{t}$ costs him/her t_{1}.

1. Describe a truthful mechanism computing the shortest path in this graph. Note that the mechanism knows which edges belong to which player. A player can misreport the cost of his/her edges.
2. Make sure that your mechanism on this particular graph satisfies voluntary participation: if a player is truth-telling, then his/her utility is non-negative (prove it).
3. Write the payments of your mechanism when the reported/true costs are as follows:

- player 1
- player 2
$\times \quad$ player 3

Exercise 4:

(3 Points)
Consider the following mechanism design problem. We have three jobs of size J_{1}, J_{2}, J_{3}, and two machines of cost t_{1} and t_{2}, respectively. The players are the machines: player i has cost load $_{i} \cdot t_{i}$, where load $_{i}$ is the sum of the jobs size allocated to this machine, and players can report a cost $c_{i} \neq t_{i}$.

Suppose we allocate jobs using a greedy algorithm $A_{\text {greedy }}\left(c_{1}, c_{2}\right)$:

1. The current job J_{k} is allocated to machine 1 if

$$
\left(\operatorname{load}_{1}+J_{k}\right) \cdot c_{1} \leq\left(\operatorname{load}_{2}+J_{k}\right) \cdot c_{2}
$$

where $l o a d_{1}$ and $l o a d_{2}$ are the current loads of the two machines (the loads given by the jobs allocated so far).
2. Else J_{k} is allocated to machine 2 .

Prove that there is no truthful mechanism $\left(A_{\text {greedy }}, P\right)$.
Hint: Consider jobs of size $J_{1}=3, J_{2}=2, J_{3}=2$, and two input costs, $\left(c_{1}, c_{2}\right)=(1,1-\epsilon)$ and $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)=\left((1-\epsilon)^{2}, 1-\epsilon\right)$.

