Algorithmic Game Theory

Fall 2016

Exercise Set 6

Exercise 1:

(2 Points)
Consider the following mechanism (A, P) which uses a generic algorithm A together with payments of the VCG mechanism. On input bids $b=\left(b_{1}, \ldots, b_{i}, \ldots, b_{n}\right)$ do the following:
(i) Compute allocation $A(b)$;
(ii) Charge each bidder i an amount

$$
\begin{equation*}
P_{i}(b):=Q_{i}\left(b_{-i}\right)-\left(\sum_{j \neq i} b_{j}(A(b))\right) \tag{1}
\end{equation*}
$$

where $Q_{i}()$ is an arbitrary function independent of b_{i}.
Prove that (A, P) above is truthful if and only if algorithm A satisfies the following condition: for every b, for every i, and every $b_{i}^{\prime} \neq b_{i}$

$$
\begin{equation*}
S W(A(b), b) \geq S W\left(A\left(b_{i}^{\prime}, b_{-i}\right), b\right), \tag{2}
\end{equation*}
$$

where $S W(a, b):=\sum_{i} b_{i}(a)$ is the social welfare of allocation a with respect to bids b.
Note: Recall that we are in the setting where each bidder i has a private valuation function $v_{i}()$ and therefore his/her utility in this mechanism is $v_{i}(A(b))-P_{i}(b)$.

Exercise 2:

(2 Points)
Consider the single minded combinatorial auction discussed in the lecture: each bidder i has a public subset S_{i}^{*} of items that he/she is willing to buy, and a private valuation v_{i}^{*} for this subset.
Suppose we run the mechanism (A, P) described in the previous exercise, with A being the Greedy-by-value algorithm. Prove that this mechanism is not truthful.

Exercise 3:
(1+1 Points)
Suppose (A, P) is truthful. Show that A must satisfy the following monotonicity condition: for all v, for all i and for all v_{i}^{\prime},

$$
v_{i}(a)+v_{i}^{\prime}\left(a^{\prime}\right) \geq v_{i}\left(a^{\prime}\right)+v_{i}^{\prime}(a)
$$

where $a=A(v)$ and $a^{\prime}=A\left(v_{i}^{\prime}, v_{-i}\right)$.
Show that this is a generalization of the monotonicity condition for the one-parameter setting (k identical items in previous exercise sheet, and single minded bidders).

Exercise 4:

(2 Points)
Reconsider the following variant of the shortest path mechanism design problem in a previous exercise sheet. Each player may own more than one edge:

- player 1
- player 2
$\times \quad$ player 3

The feasible solutions consist of the paths connecting s to t, and the cost for a player is given by the sum of the costs of his/her edges in the chosen path. For example, the path $\mathrm{s} \rightarrow \mathrm{u} \rightarrow \mathrm{v} \rightarrow \mathrm{t}$ has costs to player 1 equal to $t_{1}+t_{3}$, while $\mathrm{s} \rightarrow \mathrm{u} \rightarrow \mathrm{t} \operatorname{costs}$ him/her t_{1}.

Consider the mechanism which computes the shortest path as usual, and pays each player i the cost of the best alternative path, that is, the length of the shortest path in the graph in which all edges of player i are removed. (For example, for $i=3$, this is the shortest path in the graph where the black edge is removed.)

Prove that this mechanism is not truthful (already in the graph in the figure above).

