Algorithmic Game Theory

Fall 2016

Exercise Set 12

Exercise 1:

(4 Points)
Consider the Interns-Hospitals (Stable Matching) problem with two interns (1 and 2) and two hospitals (A and B) where now hospitals can have different preferences over the interns $\left(\prec_{A}\right.$ and $\left.\prec_{B}\right)$.

Prove that for every hospital preferences $\left(\prec_{A}\right.$ and $\left.\prec_{B}\right)$ there is a mechanism which is obviously strategyproof for the interns.
Note: When the hospital preferences coincide $\left(\prec_{A}=\prec_{B}\right)$ we have already a mechanism - the one in the lecture notes. Here you have to design a mechanism for every possible preferences of the hospitals (which are assumed to be public).

Exercise 2:

Consider the cost-sharing mechanism described in the lecture notes:

Cost-sharing Mechanism M_{σ}

1. Start with the set S of all players;
2. If there is a player i in S with $b_{i}<\sigma_{i}(S)$ then drop i from S; Repeat this step, in any order, until all i in S satisfy $b_{i} \geq \sigma_{i}(S)$.
3. Service all players in S and charge each $i \in S$ an amount $\sigma_{i}(S)$.

Consider cross monotonic cost-sharing methods σ : for any S, S^{\prime} with $S \subset S^{\prime}$ it holds $\sigma_{i}(S) \geq$ $\sigma_{i}\left(S^{\prime}\right)$ for all $i \in S$.

Your task:

1. Show that the order in which we drop a user in Step 2 is not relevant: the output of the mechanism will be always the same.
2. Give a direct proof that M_{σ} is truthful.

Exercise 3:

(2 Points)
In the lecture notes we used the mechanism M_{σ} for cost-sharing on fixed trees. Here we consider the generalization to arbitrary networks: we are given a weighted graph where every edge e has some cost C_{e} and a node s representing the server. The cost $C(S)$ for servicing a subset S of the nodes is the cost of the cheapest tree containing all nodes in S and the server s.

Show that the mechanism M_{σ} where σ is the fair cost-sharing method is not truthful for this version of the problem.
Note: In this mechanism the cost-sharing method σ is computed as follows. For each subset S of players, a corresponding optimal tree $T(S)$ of minimal cost is computed. Then the cost of each edge $e \in T(S)$ is shared equally among all $i \in S$ whose path to the server s uses e.

