Algorithmic Game Theory Summer 2016, Week 8
Mechanism Design without Money II:
House Allocation, Kidney Exchange, Stable Matching

ETH Zirich Peter Widmayer, Paul Diitting

Looking at the past few lectures you may have gained the impression that money
not only makes the world go round, but also Mechanism Design. In fact, the existence
of money was essential for most of our results. For instance, it allowed us to align the
incentives of individual players with our greater goals such as maximizing social welfare.

On the other hand it is not difficult to think about strategic situations, where the
use of money is either forbidden or considered immoral (or both). A concrete example
consider the “market” for organ donations. Allowing people to pay for organs would be
considered unfair as it would give richer people better access to replacement organs. Even
worse, it would almost certainly lead to organ trade with all its undesirable repercussions.

So what can we do in situations like this? What can we achieve with mechanisms
when we are not allowed to use money? Our focus will be on ways to exhibit truthful
behavior while at the same time constructing good solutions to our problems. We will
study this question in three exemplary situations. The allocation of resources such as
houses, kidney exchange, and stable matchings or stable marriages.

1 House Allocation

In this resource allocation problem, each of n players has a house, and each player has
a strict preference list (a total order) over all n houses. The lists describe individual
preferences, i.e., they can vary arbitrarily across players.

The question now is whether one can rearrange the allocation of houses to players
so that overall the players are better off. We assume that each player cares only about
the house she gets, and not about who gets which house among the other players. We
further assume that a mechanism cannot force players to accept a new house, but if
the mechanism proposes to a player a house that is better for her (i.e., higher on her
preference list) than what she currently owns, she will accept. It therefore makes no
sense for a mechanism to propose to a player a house that is worse for her than her
current house.

It is not hard to get an intuition for how players would behave in simple situations.
For example, if a player’s house is highest on her own preference list, she will not be
willing to exchange it for any other house, but keep it under all circumstances (i.e., for
all other players’ preferences). On the other hand, if I like your house best and you mine,
we will exchange houses. Note that we can interpret both these cases as cycles. The
first situation corresponds to a cycle of length one, a so-called self loop, and the second
situation to a cycle of length two. More generally, we can think of longer cycles along
which we could swap houses. This suggests the following algorithm.

Version : November 14, 2016 Page 1 of 8

Algorithmic Game Theory, Summer 2016 Week 8

Top Trading Cycles Algorithm (TTCA)
0. Initially, all players and all houses remain.
While players remain, do the following:

1. Let each remaining player point to her favorite (top) remaining house. This
describes a directed graph where each vertex has out-degree one.

2. Reallocate as suggested by the directed cycles in the graph (including self
loops), and delete the reallocated houses and players. All other players keep
their current houses.

The TTC Algorithm has four important and highly desirable properties.

1. Termination. The algorithm terminates, because Step 2 always reallocates along
at least one cycle. The reason for the existence of a cycle is the fact that each vertex has
exactly one outgoing edge, and therefore we can start at any vertex and follow outgoing
edges as long as we wish. At some point, a vertex must repeat, and a cycle is found.

2. Weakly improved allocation. At the end, each agent has a house that she
likes at least as much as her initial house. The reason is that after Step 2 of TTCA, all
remaining players keep their houses, and the agents that got a house in fact pointed to
this house. If a player points to her own house in an iteration of the loop, she gets it.
Other houses can be allocated to a player only earlier, when the player points to a house
higher up on her list than her own house.

3. Incentive compatibility. TTCA is incentive compatible when preference lists
are private. This is a key feature that a house allocation mechanism must have. The
reason for incentive compatibility can be explained inductively. Each player who gets a
house in the first iteration of the loop will get her first choice on the preference list, so
she has no incentive to lie. Let N; denote the set of players who get a house in iteration
1. We have just seen that for each player in Ny, TTCA is incentive compatible. Observe
that no player from among NN; points to a player j from among N;,, by contradiction: If
it would, then player j would have to be part of the same cycle, and therefore would be
in N;. Therefore, a player in N;;; cannot become part of N; (or Ny for k < i) by lying,
because lying only changes its outgoing arc, but not its incoming arc. Since player j gets
her favorite house outside of Ny U ... U N; and cannot get a house in Ny U ... U N,, she
has no incentive to lie.

While these properties may appear strong at first sight, they are indeed trivial to
achieve: Simply give her initial house to every player. This trivial mechanism can be
beaten easily if I like your house better and you mine: We will simply exchange houses.
This observation entails a requirement for good house allocation: A mechanism should
make it impossible for a subset of players to exchange houses among themselves and be
better off. Accordingly, we call an allocation a core allocation if no coalition (i.e., subset)
of players can make all of its members better off via reallocation of their houses. Then
we say that there is no blocking coalition. Note that a player in a coalition who does
not improve, but stays in the same situation, does not need to be considered part of the
coalition. Therefore, our requirement to make everybody strictly better off in a coalition
is not as delicate as it might look.

Version : November 14, 2016 Page 2 of 8

Algorithmic Game Theory, Summer 2016 Week 8

4. Unique core allocation. TTCA finds the unique allocation in the core. The
proof that the TTCA allocation is in the core is by contradiction. Assume there exists a
blocking coalition S, a subset of all players. Let ¢ be the first iteration in which a player
j in S gets a house, i.e., the smallest ¢ for which N; NS # (). Note that player j gets her
favorite house outside Ny U. ..U N,;_;. Since no player of S belongs to N;U...UN;_1, no
reallocation within S can make j better off, a contradiction. To show that the allocation
in the core is unique, we observe that all players in N; get their top choices. Hence,
these players must get their top choices also in any core allocation, otherwise they would
contain a blocking coalition formed by those players in N; who did not get their top
choices. Similarly, all players in Ny must get their houses as allocated by TTCA also in
any core allocation. By induction, the same holds for all players.

2 Kidney Exchange

One might ask for which practical settings the house allocation problem arises. Kidney
exchange appears to be similar to house allocation. Kidney transplantation from a living
donor to a patient in need has become a routine procedure. Most often, the willingness
of a donor to donate a kidney is limited to spouses, close relatives and friends. But not
each kidney is suitable for each patient (blood type and other factors play a role), so the
kidney of a willing donor may not be suitable for the patient. That’s why kidneys should
be exchanged among pairs of patient and donor, to help as many patients as possible.
If for a set of pairs of patient and donor, each patient has a total preference order over
all kidneys (taking into account factors such as blood type, tissue type, and many more
factors), the TTCA mechanism can be used to make everybody better off.

For the reality of kidney exchange, the TTC Algorithm may not give good solutions,
for two reasons. One reason is the fact that cycles produced by TTCA may be very long,
but long cycles correspond to lots of surgery that should happen at the same time and at
the same hospital, a difficulty or an impossibility. The condition for all involved surgical
operations to happen simultaneously comes from the problem that after a willing donor’s
spouse got a new kidney, the formerly willing donor may no longer be willing to donate
a kidney. This not only gives an unfair free kidney to his spouse, but also prevents the
other donor’s spouse from taking part in the kidney exchange in the future, since she
has no donor to offer. Another reason is that a total preference order over all kidneys
may be an overkill, and it may be preferable to simply distinguish suitable kidneys from
unsuitable ones.

Therefore, a viable alternative for kidney exchange is to look for pairwise kidney
exchanges in a graph of binary preferences. Instead of a directed graph, we can as well
model this situation by an undirected graph, where each vertex is a patient-donor pair
and each edge tells that both pairs are interested in an exchange. That is, we look for a
matching of maximum cardinality in the exchange graph, where a matching is a subset
of the set of edges in which no two edges share an end vertex. Now the goal is to find
a maximum cardinality matching in a truthful way, where the private information of a
patient-donor pair is the set of acceptable other patient-donor pairs, that is, the set of
outgoing arcs in the directed graph that gives rise to the undirected graph. We aim at a
matching algorithm for which reporting all outgoing arcs is a dominant strategy.

We will show that the following mechanism achieves this objective.

Version : November 14, 2016 Page 3 of 8

Algorithmic Game Theory, Summer 2016 Week 8

Maximum Matching Mechanism

1. Get a bid from each player (patient-donor pair) consisting of the acceptable
edge set F; for player i.

2. Define the set of edges on which the players agree as E = {(i,7) | (i,7) €
FinF}.

3. Return a maximum (cardinality) matching.

In order to prove truthfulness, we need to clarify which of the maximum matchings should
be returned in Step 3. Maximum matchings differ in two possible ways. First, in an even
length cycle, each of two alternating matchings can be chosen. No matter which one is
chosen, the same patient-donor pairs get kidney exchanges, and therefore there is no room
for strategizing. Second, for a single node with several incident edges as in a star, any
one of these edges might be chosen, which might give rise to strategizing. One can avoid
this by giving priorities to patient-donor pairs initially, according to medical criteria (e.g.,
how much in need is a patient, how long did she wait already) or circumstantial criteria,
and by choosing the edge that matches a highest priority vertex if there is a choice. Let
the priorities be reflected in the identities of the vertices. Then, Step 3 becomes:

Priority Matching Mechanism (Cont’d)
3a. Let Mj be the set of all maximum matchings of the given graph.

3b. Loop fori=1,...,n:
// The order of vertices in this loop reflects their priorities
// Serve vertex i as best you can
If some matching in M; _; matches vertex ¢, then kick out all matchings from
M, 1 that do not match vertex i, yielding M;.
Else leave M; as is, yielding M; = M;_;.

3c. Return an arbitrary matching from M,,.

Note that since M, is nonempty, so is M,,. It is easy to see by induction that the priority
matching mechanism is truthful in the sense that no vertex can go from unmatched to
matched by reporting a proper subset of its true edge set, for every collection of true edge
sets and every ordering of the vertices.

If one also takes the incentives of hospitals in to account, the situation is less satis-
factory. Let us assume that there is a national (or even wider) kidney exchange office to
which hospitals are required to report their patient-donor pairs, and where then matches
are made (as it is the case in the United States). Each hospital has the objective to match
as many of its patient-donor pairs as possible, and this objective is not well aligned with
the global objective of matching as many patient-donor pairs as possible overall, as we will
see in the following example. Assume two hospitals H; and H, have patient-donor pairs
1,2, and 3 in H; and 4, 5, 6 and 7 in Hy. Assume that the graph has edges (1,2), (1,4),
(2,5), (3,7), (5,6), and (6,7). Since for an odd number of vertices, no perfect matching
exists, at least one vertex must remain unmatched. There are six matchings with three

Version : November 14, 2016 Page 4 of 8

Algorithmic Game Theory, Summer 2016 Week 8

edges each, and in some of them a vertex from H; is unmatched. If, however, H; does not
report its edge (1,2) to the mechanism, there will be only one maximum matching, and
this matching will match vertex 3. Therefore, H; has an incentive to misreport. That
is, the incentive of the hospital is not in line with the incentive of society. Finding good
approximate solutions is therefore an area of current research.

3 Stable Matching

The stable matching problem differs from the kidney exchange matching problem in two
ways. Preferences are not binary, but each player has a total order over all alternatives,
and the result of the matching is required to contain no blocking pair of vertices. Since
stable matching is a workhorse for many situations and has been used for decades in
settings such as assigning medical school graduates to hospitals, assigning room mates
to dormitories, and many more, let us describe it independently of kidney exchange in
full detail, at the classical example of matching men and women. We limit ourselves
to bipartite stable matching, also called stable marriage. We are given n men and n
women. Each man has a total preference order over all women, and each woman has a
total preference order over all men. As an example, consider the set U consisting of three
men A, B, and C, and the set V consisting of three women D, E, and F. Assume the
preferences of the men are all identical lists D, E, F, where D is liked best and F least.
For woman D, the preferences are A, B, C. For woman E, they are B, C, A. For woman F,
they are C, A, B. The graph representing the possible matchings is a complete bipartite
graph between the vertices in U and those in V.

1 1
A D
2 2

3
1 3
2 1
B E
2
C 3 . F

Figure 1: Visualization of the example. Edge labels denote preferences. Labels range
from 1 (most preferred) to 3 (least preferred).

A maximum matching in a complete bipartite graph matches every vertex and is
therefore called a perfect matching. Among all perfect matchings, our goal is to identify
one that does not contain a blocking pair, i.e., a pair u € U,v € V of vertices that are not
matched, but prefer each other to the partners to which they are matched. Obviously,
such a pair would make the matching unstable, because u could simply run away with v
from their marriages and be better off.

Let us study the classical algorithm to solve this problem, the Proposal Algorithm by
Gale and Shapley.

Version : November 14, 2016 Page 5 of 8

Algorithmic Game Theory, Summer 2016 Week 8

Proposal Algorithm
1. Initially, nobody is matched.

2. Loop until all men are matched
Let man u propose to his favorite woman who has not rejected him yet.
Let each woman only entertain her best offer so far and reject all others.

Observe that this algorithm is not fully determined, because it is open which man u to
choose in an iteration of the loop. Still, one can see a few properties of the algorithm: 1)
Over time each man goes through his preference list sequentially, from best to worst. 2)
For each woman, the men that she accepts over time (and maybe later rejects) get better
over time. 3) At any point in time, each man is matched to at most one woman, and
vice versa. 4) The proposal algorithm terminates after at most n? iterations. The reason
is that each man asks each woman in his list at most once. 5) The proposal algorithm
terminates with a perfect matching. Otherwise, a man would have been rejected by all
women. But a woman rejects a man only if she has a better man, of which there are only
n—1. So, only n—1 women can end up with a better man than, and one woman would be
left without a man, a contradiction. 6) The proposal algorithm terminates with a stable
matching. For the sake of contradiction, consider man u not matched to woman v. There
are two possible reasons for v not being matched to v: Either u never proposed to v, or
u proposed to v at some point, but was rejected by v (either upon proposing or later).
In the first case, © must be matched to a woman higher than v on u’s list. But then the
pair u, v is not blocking. In the second case, v must have rejected u for a man higher on
v’s list than w, so also in this case, u, v are not a blocking pair. 7) As a corollary, we now
know that for every collection of preference lists a stable matching exists.

After observing these properties without having specified how the next man u to
propose is chosen, let us now study how we should choose the next man to get the best
result. At this point, it is not even clear what the range of possible results is that the
proposal algorithm generates, and how good they are for the men and women. For man
u, let h(u) denote the best woman u can possibly get, i.e., the highest ranked woman on
u’s list that is matched to u in any stable matching. Amazingly, each man u gets h(u) in
the proposal algorithm, as the following theorem states:

Theorem 8.1. For every man u € U, the proposal algorithm matches u with h(u).

This in particular means that it makes no difference which man w is picked next.

Proof. For a pair u,v that is matched by the proposal algorithm, we know that any
woman v’ whom u prefers to v must have rejected u at some point. We only need to
prove that this will always be fine i.e., that whenever a woman v’ rejects a man u at
some point, no stable matching pairs v and v’. This will imply the theorem. We prove
the claim by induction. Initially, no woman rejected any man, so the claim holds. Now
consider the rejection of a man u by a woman v’. Note that v’ rejects u in favor of a better
man u’. Since u’ worked from the first woman of his preference list down to v, every
woman that u’ prefers to v’ rejected him already. By the inductive hypothesis that no
stable matching matches a man to a woman that rejects him in the proposal algorithm,
no stable matching matches «' with a woman whom he prefers to v’. As v prefers u’ to u,
and u’ prefers v’ to any woman he might get in any stable matching, it would be unstable
to match u with ¢/, and hence no stable matching pairs u with v’. This concludes the
induction. O

Version : November 14, 2016 Page 6 of 8

Algorithmic Game Theory, Summer 2016 Week 8

Interestingly, the stable matching found by the proposal algorithm turns out to be
worst for the women, a fact that we will not prove here. So, the proposal algorithm is
really a male proposal algorithm that gives every man his best woman. It comes therefore
as no surprise that it is truthful for the men, but not for the women, when preference
lists are private:

Theorem 8.2. The male proposal algorithm is incentive compatible for the men, but not
for the women.

Proof. No truthfulness for the women can be demonstrated by an example. Assume we
are given men D, E; F and women A, B, C (for a change of names). The preferences are
as follows: Man D ranks the women B, A, C. Man E ranks the women A, C, B. Man F
ranks the women A, B, C. Woman A ranks the men D, F, E. Woman B ranks the men F,
D, E. Woman C ranks the men D, F, E. These are the true ranks, and the male proposal
algorithm matches D with B, E with C, and F with A. If, however, woman A lies and
declares D, E, F instead, she gets man D, a better man for her.

Truthfulness for the men can be seen by contradiction. Assume some man u lies and
improves. Let M be the stable matching that the male proposal algorithm produces for
true preferences, and let M’ be the matching produced for the preference lists in which
u lies. Let R be the set of all those men who improve in M’ as against M. Let S be
the set of women matched to men in R in the matching M’. Let v be the woman that
u gets in M’. Since M is stable, we know that v cannot prefer u to the man she got in
M, because this would make u,v a blocking pair in M (recall that man wu is better off
in M’ than in M, so he prefers v to the woman he gets in M). In other words, woman
v prefers the man she gets in M to u. Now, if v’s man in M would not improve in M’,
he would propose to v in M’, and since v prefers him to u, v could not be matched with
u in M’, a contradiction. Therefore, v’'s man in M also improves in M’, that is, belongs
to R. Hence, S is not only the set of women in M’ of the men in R, but also the set
of women in M of the men in R. In other words, each woman in S is matched to two
different men from R in matchings M and M’, being better off in M than in M’. We will
now show that M’ cannot be stable, a contradiction that terminates the proof. We show
this by looking at M and focusing on the last proposal of a man from R in the proposal
process that leads to M. Call the man who proposes last ' € R. This proposal must be
to his woman in M, say v/, and v' must accept for this proposal to be last from among
men in R. We know already that v" € S. Now observe that every woman in S rejects in
M her man in M’, because this man prefers her over his woman in M and hence went
through his preference list proposing to the rejected woman earlier. Especially, v" must
have rejected her man in M’ already in the male proposal algorithm producing M, so v’
must have had a man u” when u’ proposed to her, and she must have rejected this man
for u’. Because v’ only improves as time passes and she accepted u” after rejecting her
man in M’, she prefers u” to her man in M’. Note that in particular, u” cannot be her
man in M’, because if it were, u” would belong to R and would need to propose again,
contradicting the assumption that the proposal by «' is the last one from among R. For
this reason u” is known to be outside R. After u” is rejected by v’, he ends up with a
woman lower on his list than v’. This, however, makes M’ unstable, as we will now show.
Woman v’ prefers v” to her man in M’, because she accepted u” after having accepted
her man in M’. Man u” in turn prefers v" over his woman in M, because he got rejected
by v who must therefore be higher on his list. Furthermore, u” prefers his woman in
M over his woman in M’, because he does not belong to R. Hence, u” prefers v' to his

Version : November 14, 2016 Page 7 of 8

Algorithmic Game Theory, Summer 2016 Week 8

woman in M’ so these two form a blocking pair, making M’ not stable. O]

Recommended Literature

e James Schummer and Rakesh Vohra, Algorithmic Game Theory, Chapter 10: Mech-
anism Design without Money, Cambridge University Press, 2007. (General intro-
duction to the topic)

e Tim Roughgarden, Lecture Notes for 364A: Algorithmic Game Theory, Lecture #9:
Beyond Quasi-Linearity, 2015. (House allocation)

e Tim Roughgarden, Lecture Notes for 364A: Algorithmic Game Theory, Lecture
#10: Kidney Exchange and Stable Matching, 2015. (Kidney exchange and stable
matching)

e Lloyd S. Shapley and Herbert Scarf, On Cores and Indivisibility. Journal of Math-
ematical Economics, 1(1):23-28, 1974. (TTC Algorithm)

e Alvin E. Roth, Tayfun Sénmez, and M. Utku Unver. Kidney Exchange. Quarterly
Journal of Economics, 119(2):457-488, 2004. (Original results on kidney exchange)

e David Gale and Llyod S. Shapley, College Admissions and the Stability of Marriage,
American Mathematical Monthly, 69: 9-14, 1962. (Man Proposal Algorithm)

Version : November 14, 2016 Page 8 of 8

	House Allocation
	Kidney Exchange
	Stable Matching

