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Mechanism Design without Money:

Voting Systems

ETH Zürich Peter Widmayer, Paul Dütting

Voting systems are among the most well known mechanisms without money. It gen-
erally serves the purpose of aggregating preference lists into a group decision. In the
simplest case this is a single winner. More generally, we could ask for a ranking of the
candidates. Is the well known majority rule a good mechanism? Are there better ones?
What does it even mean to be a good mechanism in this case?

1 Basic Definitions

We will study a setting with n players, called voters 1, . . . , n, each of whom has a complete
individual preference list over all possible alternatives A. The total order of voter i over
all alternatives is denoted by ≥i, where X ≥i Y means that voter i prefers alternative
X over alternative Y . Since we require a total order, the preference relation of each
voter is requested to be transitive and antisymmetric. The objective of a voting system
is to aggregate the preference lists of all voters into a single total order that reflects the
voters’ preferences. A voting system is often called a social welfare function, formally
denoted as function F : Ln → L, where L is the set of all linear orders over A (i.e., L is
isomorphic to the set of all permutations of A). The input to F is called a profile, with
F (P ) denoting the aggregated votes of profile P , or sometimes simply denoted as ≥. In
situations where only a single winner needs to be elected, the aggregation of all votes
into a linear order achieves more than needed. In this case, we talk about a social choice
function f : Ln → A, with f(P ) denoting the winner for profile P .

2 Warm-Up

Let us gain some intuition for the voting problem by approaching it “bottom up”. That
is let us start with the simplest settings that one can imagine: settings with only two or
three alternatives.

2.1 Voting with Two Alternatives

For two alternatives, a social choice function tells just as much about the aggregated
ranking as a social welfare function: With one alternative being the winner, the other is
the loser. In this case, majority voting is the obvious solution to the rank aggregation
problem. It trivially is incentive compatible. While one might think that there is not
much to say about majority voting, May proved that it is the only reasonable voting
system for two alternatives.
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2.2 Voting with Many Alternatives

For three or more alternatives, voting becomes more tricky. As an example, let us consider
three voters and a set of three alternatives {X, Y, Z}. The totally ordered preference list
for the voters are X, Y, Z for voter 1, with the highest ranked alternative first in the list,
Y, Z,X for voter 2, and Z,X, Y for voter 3. Interestingly, the same setting describes a
situation in which a single individual aims to make a decision based on multiple criteria.
A buyer’s choice between three cars, for instance, based on the three criteria price, fuel
consumption, and annual insurance cost might give the preference lists above, where the
alternatives are the cars and the voters are the criteria.

voter 1 voter 2 voter 3
1st choice X Y Z
2nd choice Y Z X
3rd choice Z X Y

Figure 1: Example with three voters

2.2.1 Tournament Voting

As in a sports competition, one might opt for a tournament in which pairwise majority
kicks out a loser (of a pair of alternatives) in each round, repeating until only one winner
remains. In our example, we could first vote among alternatives X and Y , in which case X
wins with two votes against one. Then, the vote among X and Z lets Z wins, again with
two votes over one, and hence, Z is the overall winner. While this may sound reasonable,
it provides room for strategizing: If we change the sequence of competitors and let first
X and Z compete, Z wins the first round and then loses against Y in the second round.
This dependence of the result on the sequence of “games” is clearly undesired.

2.2.2 Voting by Pairwise Majority

Instead of pairwise majority for just those pairs that the tournament dictates, one might
opt for ranking all alternatives by taking a pairwise majority vote for each and every pair.
In our example, this will lead to three majority votes for the three pairs: X ≥ Y , Y ≥ Z,
and Z ≥ X with two votes against one in each case. The result relation, unfortunately,
is useless, since it is not transitive (but cyclic), so it does not define a voting system.
This phenomenon has been observed already around the times of the French revolution
(appropriately) by Condorcet. It is known as the “Condorcet paradox”.

2.2.3 Positional Voting

A well known voting system for parliament elections makes voters choose a few candidates
out of many and aggregates this choice. More generally, positional voting assigns a weight
to each position of the total order, and simply sums up the weights that an alternative gets
over all voters. The social welfare function then merely arranges alternatives according to
their sum of weights. Note that ties are possible, but are not a problem—one can think
of resolving them in simple ways, like according to a predefined preference. One specific
positional voting system, known as the Borda count, assigns weight i to the alternative
in position i+ 1 from below. That is, the lowest ranked alternative of a voter gets weight
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0 for this voter, the next higher alternative gets weight 1, and so on. Let us look at
an example. For two alternatives X and Y and five voters, where three voters rank X
higher than Y and two voters prefer Y over X, we get Borda counts of 3 for X and 2
for Y , so X wins, as it should. Now, let an alternative Z come in that nobody likes at
all, so everybody ranks last. With the new preferences, still X wins with a Borda count
of 8 against Y with count 7. Unfortunately, this system has room for cheating: If the
two voters who prefer Y to X place Z second on their lists (instead of third), the count
for X drops to 6, and Y wins. This example tells that the Borda count is not incentive
compatible: An irrelevant alternative, namely Z, can be used to influence the result.

3 Impossibility Results

The attempts above of identifying a satisfactory voting system for more than two alter-
natives failing, we should clarify what a satisfactory voting system should and should
not do. We will now describe three properties that a voting system should have, none of
which appear exaggerated—quite the opposite. We then explain that no voting system
can satisfy all three properties in general. This result, due to Arrow, should not be viewed
as the complete impossibility of democracy; it should rather be used as a guide for the
search for good voting systems.

3.1 Desirable Properties

The first desirable property says that an irrelevant alternative should not matter, in the
following sense:

Definition 7.1. A social welfare function F satisfies independence of irrelevant alterna-
tives (abbreviated IIR) if the following holds: For every pair of alternatives X and Y and
every two profiles P and Q, we have: If every voter i has the same preference between
X and Y in P as in Q, then also F must have the same preference between X and Y in
F (P ) as in F (Q).

While IIA rules out the effect of irrelevant alternatives, it does not rule out that F
goes against all voters: It could prefer X to Y even though every voter prefers Y to X.
This would obviously go totally against the voters’ preferences, violating even minimum
democratic requirements. We therefore aim to rule it out:

Definition 7.2. A social welfare function F satisfies unanimity (also called the Pareto
principle) if the following holds: If for some pair of alternatives X and Y every voter
prefers X to Y , then also F must prefer X to Y .

Just like going against all voters is undesirable, so is a voting system that always
simply goes with a single, specific voter (after the French revolution, one may think of
the (former) king being one of the voters, and the voting system being arranged so that
it always follows exactly the king’s vote):

Definition 7.3. For a social welfare function F , voter i is a dictator in F , if for any
profile P , F (P ) equals voter i’s preference order. A social welfare function F is a dicta-
torship if there exists a voter who is a dictator in F .
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3.2 Arrow’s Theorem

We are now in the position to prove that these three plausible requirements are incom-
patible.

Theorem 7.4 (Arrow 1950). For more than two alternatives, any voting system that
satisfies IIA and unanimity is a dictatorship.

Proof. It helps to express IIA in a slightly different way, by focussing on interesting pairs
of alternatives and not talking about all others. We say that a ranking is restricted to
X and Y if we erase all other alternatives from the ranking. That is, we are left with
only X and Y , in the order given in the (full, unrestricted) ranking. If we now restrict
every individual ranking to X and Y , we get a profile restricted to X and Y . We can now
rephrase IIA as follows: For any two profiles P and Q that are identical when restricted
to X and Y , the social welfare function F must produce rankings F (P ) and F (Q) that
are identical when restricted to X and Y .

Let now F be a voting system that satisfies IIA and unanimity. We will prove that F
is a dictatorship in three steps. First, we show that F must place an alternative first or
last in its ranking if every voter does—a polarizing alternative. Second, the reasoning of
the first step points at a powerful voter, a potential dictator. Third, we show that this
powerful voter indeed is a dictator.

Step 1: A polarizing alternative. Let us call an alternative X a polarizing alter-
native if X is ranked either first or last by every voter (not necessarily the same by every
voter, though). We will show that F must place a polarizing alternative first or last, as
follows. Let P be a profile in which X is polarizing. Assume for the sake of contradiction
that X is neither first nor last in F (P ). That is, some alternative Y ranks higher than
X and some other alternative Z ranks lower in F (P ). Now, we create a new profile by
modifying P , and we study how F must behave. Within P , for each voter who ranks Y
higher than Z, slide Z directly in front of Y . This manipulation creates a new profile Q,
where for each affected voter the ordering of all other alternatives (except Z) remains the
same, but the voter ranks Z now higher than Y (and higher than some other alternatives
below it was before, but this is not our interest). So, X remains polarizing in Q, and
it maintains its order w.r.t. Y and Z in each voter’s list of preferences. By IIA, F (Q)
must therefore still (as in F (P )) rank Y above X above Z. But since every voter ranks
Z above Y in profile Q, by unanimity F (Q) must rank Z higher than Y , a contradiction.

Step 2: A potential dictator. Let us identify a powerful voter by inspecting how
F (P ) changes as we make an alternative X jump from last to first position for one voter
after another, starting with X last for each voter and ending with X first for each voter.
Towards this end, let us choose an alternative X, and a profile P0 that ranks X last for
every voter. Define profile P1 by modifying P0 by moving X from last to first position for
voter 1. Generally, define profile Pj by modifying profile Pj−1 by moving X from last to
first position for voter j. Note that Pj has X first for voters 1, . . . , j and last for voters
j + 1, . . . , n. The sequence of profiles ends with Pn that has X first for every voter. All
other alternatives remain unchanged relative to each other throughout.

Now we start to observe how F behaves. By unanimity, X must be last in F (P0) and
first in F (Pn). Hence, there must be a voter i whose modification of X ranking last to
first results in X going from last in F (Pi−1) to first in F (Pi). Note that at this point, we
cannot claim that i is unique, but this is of no concern to us, so we will simply think of
the smallest such i. Hence, i is a very powerful voter whom we call a potential dictator.
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Step 3: Indeed a dictator. We will now prove that voter i from Step 2 is indeed
a dictator. We prove this by arguing that for any profile Q and for any alternatives Y
and Z, the ordering of Y and Z in F (Q) is the same as the ordering of Y and Z by
voter i. First, we show this to be true whenever both Y and Z differ from X. Again,
our proof works by modifying profile Q and observing how F must behave. We create a
new profile R from Q by the following modifications: (1) move X to the first position for
voters 1, . . . , i (for voters for which it is already there, leave it there); (2) move X to the
last position for voters i+1, . . . , n (for voters for which it is already there, leave it there);
(3) for voter i, move Y to the first position (i.e., right before X that becomes second).
Let us now study how F must act for R. We do this by making five simple observations.

Observation 1. When restricted to X and Z, R and Pi are the same. X is first in
F (Pi). By IIA, F (R) must prefer X over Z.

Observation 2. When restricted to X and Y , R and Pi−1 are the same. X is last in
F (Pi−1). By IIA, F (R) must prefer Y over X.

Observation 3. By transitivity, F (R) must prefer Y over Z.
Observation 4. When restricted to Y and Z, R and Q are the same. By IIA, F (Q)

must prefer Y over Z.
Observation 5. (Conclusion from Observations 1 to 4.) The group ranking of F must

be identical with the ranking of voter i for any profile Q and any pair of alternatives Y
and Z that are different from X.

We still need to prove that also when alternative X is involved, i’s ranking determines
the group ranking. We do so by first noticing that the reasoning above shows that there
also is a voter j whose ranking determines the group ranking when some alternative
W 6= X is considered instead of X. We will show that i = j, so we have a single voter
who determines the entire group ranking, which then terminates the proof. We prove
i = j by contradiction. Assume therefore now that i 6= j. Note that X and W are fixed.
Let V be an alternative different from X and W . Profiles Pi−1) and Pi differ only in voter
i’s ranking, but the ordering of V and X differs in F (Pi−1)) and F (Pi). Thus, in one of
F (Pi−1)) and F (Pi), the order of V and X must differ from the order of V and X in j’s
ranking, and therefore voter j does not determine the order of V and X, a contradiction
to i 6= j. Therefore, i = j is the sole dictator.

3.3 Gibbard-Satterthwaite Theorem

A different observation can be made for social choice functions, and can be proven in much
the same way as Arrow’s theorem. The notion of a dictator needs a slight adaptation:
We call voter i a dictator if her most preferred alternative is chosen, regardless of all
other voters’ preferences. A social choice function can be strategically manipulated if
some voter i who prefers X to Y can misreport her preferences so that socially, X is
chosen rather than Y . Social choice funktion f is called incentive compatible if it cannot
be strategically manipulated. Then one can prove:

Theorem 7.5 (Gibbard 1973, Satterthwaite 1975). Let f be an incentive compatible
social choice function onto the set A of more than two alternatives. Then f is a dicta-
torship.

Just like Arrow’s theorem, the theorem by Gibbard and Satterthwaite should not be
seen to destroy all hopes for acceptable election schemes, but instead guide the search for
good schemes—which is indeed an active area of research.
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