Algorithmic Game Theory

Fall 2019

Exercise Set 2

> These exercises are non-graded. You can submit your solutions at the beginning of next lecture (October 4) or by email (same deadline, to paolo.penna@inf.ethz.ch) in order to get feedbacks.

Exercise 1:

Fair cost sharing games are congestion games with delay functions of the form

$$
d_{r}(x)=c_{r} / x
$$

where c_{r} is a positive constant. (In these games, c_{r} represents the cost for building resource r, and this cost is shared equally among the players using this resource.)
(a) Show that fair cost sharing games with n players are ($n, 0$)-smooth.
(b) For every n, give an example of a fair cost sharing game with n players whose price of anarchy for pure Nash equilibria $(P o A)$ is at least n.

Exercise 2:

(3 Points)
An ϵ-Nash equilibrium is a state $s \in S$ such that

$$
c_{i}(s)(1-\epsilon) \leq c_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

for all players i and for all $s_{i}^{\prime} \in S_{i}$. Prove that in congestion games with affine delay functions the cost of any ϵ-Nash equilibrium is at most $\frac{5}{2-3 \epsilon}$ times the optimal social cost. (The social cost is the sum of all players' costs.)

Exercise 3:

(3 Points)
In this exercise we consider load balancing games: There are m machines of identical speeds. Player i is in charge of one job of weight $w_{i}>0$. Every player may choose a machine to process this job; his strategy set is therefore $\{1, \ldots, m\}$. Player i 's cost in state s is given as

$$
c_{i}(s)=\operatorname{load}_{s_{i}}(s):=\sum_{i^{\prime}: s_{i^{\prime}}=s_{i}} w_{i^{\prime}} .
$$

(Note that this is the load of the machine chosen by i, including w_{i}.)
Prove that every pure Nash equilibrium is a local minimum for the function f given by the sum of the squares of the machine loads:

$$
f(s)=\sum_{\ell=1}^{m}\left(\operatorname{load}_{\ell}(s)\right)^{2}
$$

Explain how this implies that a pure Nash equilibrium exists. Does f satisfy the definition of potential game given in the lecture (Lecture 1)?

Exercise 4:
(3 Points)
Consider again load balancing games introduced in the previous exercise. Now define the cost of a strategy profile as the maximum load among all machines:

$$
\begin{equation*}
\operatorname{cost}(s)=\max _{\ell \in\{1, \ldots, m\}} \operatorname{load}_{\ell}(s) \tag{1}
\end{equation*}
$$

Show that in these games $P o A \leq 2$ for any number m of machines, where $P o A$ is the price of anarchy for pure Nash equilibria defined with respect to the cost function in (1).

