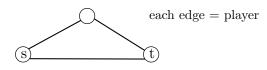
ETH Zürich Luca Corinzia, Gabriela Malenova, Ivan Ovinnikov, Paolo Penna

November 8, 2019


Deadline: Beginning of next lecture

Algorithmic Game Theory

Fall 2019

Exercise Set 8

Exercise 1: (2 Points) Consider the following scenario (a variant of the in-class exercise of this week – lecture 8):

and we want to sent T units of traffic from s to t. Moreover:

1. Each player *i* has a **private** working **capacity** K_i :

If i gets more than K_i units of work, each extra unit costs him/her some amount Δ . All the work below K_i has no cost.

2. We give a **fixed compensation** per unit of traffic:

 $F \cdot w_i$

is the payment to player i when he/she gets w_i units of traffic.

Question 1: Model this game as a single-peaked preferences when $F < \Delta$. Question 2: Which outcomes are selected by the median voter?

Exercise 2:

(2+2+2 Points)

We have three voters and three alternatives X, Y, Z. Consider the following two preference profiles:

P	$ \prec_1$	\prec_2	\prec_3	$Q \mid \prec_1' \prec_2' \prec_3'$
	X	Y	Z	$\qquad \qquad $
	Y	X	Y	Y X Y (1)
	Z	Z	X	X Y Z

Question 1: Show that, if only these two profiles are possible, then *every* social welfare function satisfies **independence of irrelevant alternatives (IIA)**.

Question 2: Suppose that for every player we know his/her 2^{nd} preference. Does every social welfare function satisfy independence of irrelevant alternatives? What if we had four alternatives X, Y, W, Z, and we knew for each voter his/her 2^{nd} and 3^{rd} choice?

Question 3: Suppose the possible preferences are all combinations of the individual ranks in (1). That is, all possible profiles are of the form

$$R = (R_1, R_2, R_3) \qquad \text{where } R_i \in \{\prec_i, \prec_i'\}$$

$$(2)$$

I propose you the following social welfare function:

- 1. If voter 1 and 3 agree $(R_1 = R_3)$ then return their preference $(F = R_1)$;
- 2. Else $(R_1 \neq R_3)$ return some order to be specified (F = ?)

Can you have IIA + unanimity, but no dictator?

Exercise 3:

(3 Points)

Consider the following facility location problem. We have N feasible locations on the line corresponding to the points $\{1, 2, ..., N\}$. There are n players having an ideal (private) position p_i where they would like the facility to be opened, and their cost if facility x is chosen is the distance to the facility $c_i(x) = |x - p_i|$.

Question: Give an incentive compatible (truthful) mechanism which guarantees a 2-approximation for the maximum cost

$$maxcost(x, p) = \max_{i} c_i(x),$$

where $p = (p_1, \ldots, p_n)$ and $c_i()$ is as above. (The solution should have *maxcost* at most twice the optimal one, no agent should benefit from misreporting p_i , and there are no payments.)