Algorithmic Game Theory

Fall 2019
Exercise Set 8

Exercise 1:

(2 Points)
Consider the following scenario (a variant of the in-class exercise of this week - lecture 8):

and we want to sent T units of traffic from s to t . Moreover:

1. Each player i has a private working capacity K_{i} :

If i gets more than K_{i} units of work, each extra unit costs him/her some amount Δ. All the work below K_{i} has no cost.
2. We give a fixed compensation per unit of traffic:

$$
F \cdot w_{i}
$$

is the payment to player i when he/she gets w_{i} units of traffic.

Question 1: Model this game as a single-peaked preferences when $F<\Delta$.
Question 2: Which outcomes are selected by the median voter?
Exercise 2:
We have three voters and three alternatives X, Y, Z. Consider the following two preference profiles:

P	\prec_{1}	\prec_{2}	\prec_{3}
	X	Y	Z
	Y	X	Y
	Z	Z	X

Q	\prec_{1}^{\prime}	\prec_{2}^{\prime}	\prec_{3}^{\prime}
	Z	Z	X
	Y	X	Y
	X	Y	Z

Question 1: Show that, if only these two profiles are possible, then every social welfare function satisfies independence of irrelevant alternatives (IIA).
Question 2: Suppose that for every player we know his/her $2^{\text {nd }}$ preference. Does every social welfare function satisfy independence of irrelevant alternatives? What if we had four alternatives X, Y, W, Z, and we knew for each voter his/her $2^{\text {nd }}$ and $3^{\text {rd }}$ choice?
Question 3: Suppose the possible preferences are all combinations of the individual ranks in (1). That is, all possible profiles are of the form

$$
\begin{equation*}
R=\left(R_{1}, R_{2}, R_{3}\right) \quad \text { where } R_{i} \in\left\{\prec_{i}, \prec_{i}^{\prime}\right\} \tag{2}
\end{equation*}
$$

I propose you the following social welfare function:

1. If voter 1 and 3 agree $\left(R_{1}=R_{3}\right)$ then return their preference $\left(F=R_{1}\right)$;
2. Else $\left(R_{1} \neq R_{3}\right)$ return some order to be specified ($F=$?)

Can you have IIA + unanimity, but no dictator?

Exercise 3:

(3 Points)
Consider the following facility location problem. We have N feasible locations on the line correspoding to the points $\{1,2, \ldots, N\}$. There are n players having an ideal (private) position p_{i} where they would like the facility to be opened, and their cost if facility x is chosen is the distance to the facility $c_{i}(x)=\left|x-p_{i}\right|$.
Question: Give an incentive compatible (truthful) mechanism which guarantees a 2-approximation for the maximum cost

$$
\operatorname{maxcost}(x, p)=\max _{i} c_{i}(x),
$$

where $p=\left(p_{1}, \ldots, p_{n}\right)$ and $c_{i}()$ is as above. (The solution should have maxcost at most twice the optimal one, no agent should benefit from misreporting p_{i}, and there are no payments.)

