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Regret Minimization and Correlated Equilibria

ETH Zürich Paolo Penna

Overview

We have seen different type of equilibria and also considered the corresponding price of
anarchy. These equilibria have different features:

PNE

MNE

CE

CCE

may not exist
hard to find

always exist
hard to find

always exist
easy to find

In this lecture we show that coarse correlated equilibria (CCE) are easy to compute.
We have also seen that the price of anarchy bounds obtained via the smooth framework
extend to CCE equilibria. An interesting class of games are congestion games with affine
delays: (1) The price of anarchy for PNE is 5/2, but (2) computing PNE is such games
is PLS-complete. Fortunately (3) the 5/2 bound on the price of anarchy holds also for
CCE and (4) today we see that CCE can be computed in polynomial time (in any game).

Structure of this lecture

• How to play against and adversary (regret minimization)

• From regret minimization to CCE (no-regret dynamics)

1 Regret Minimization

The next two sections will introduce the main ideas towards the general definition of
regret-minimization and the algorithm. You can jump directly to Section 1.2 for the
general results.

1.1 Experts Problem (warm up)

Consider this setting. We have m ‘experts’ that tell us if tomorrow it will rain (R) or be
sunny (S). One of these expert is a real expert, meaning that he/she is never wrong.
We do not know who is the expert. Every day we make a prediction based on what the
experts tell us. If our prediction is wrong, we have a cost equal to 1, otherwise we incur
no cost. Here is one algorithm
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Majority Algorithm (MAJ): Each day do the following:

• Take the majority of the experts’ advice

• Every time an expert is wrong, discard him/her from future consideration;

Claim 1. The number of mistakes is at most logm, where m is the number of experts.

Proof. Every mistake will half the number of experts that the algorithm takes into ac-
count.

What if the best expert makes some mistakes?

We could restart the previous algorithm every time we run out of experts. If the (best)
expert makes r∗ errors, we are going to make at most r∗ logm errors: After each phase
(we discarded all experts), the best expert must have done at least one mistake. So we
cannot restart more than r∗ times, and a phase will cost us at most logm (as before).

The main idea of next algorithm is to keep a weight for each expert and reduce
his/her weight whenever he/she was wrong.

Weighted Majority (WM): Each day do the following:

• w1(a)← 1 (initial weights)

• wt+1(a)← wt(a) · 1
2

if a errs at step t

Do weighted majority to decide S or R at step t;

Claim 2. The number of mistakes is at most

2.41 CBEST + 2.41 logm,

where m is the number of experts and CBEST is the number of mistakes of the best expert.

Proof. We work with the following quantities:

W t :=
∑
a

wt(a)

and show two things:

1. If the best expert does not make many mistakes, in the end W T is not too small;

2. Every time we make an error, then W t drops exponentially.

The intuition is that we cannot do too many mistakes, if the best expert does few mistakes.
Here is the first step: every time the best expert a∗ makes one mistake, we half its weight,
therefore

W T+1 ≥ wT+1(a∗) = w1(a∗)︸ ︷︷ ︸
1

·
(

1

2

)CBEST

.
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We claim that every time we make a mistake at step t, we have

W t+1 ≤ W t

(
3

4

)
because we will half the weights of W t which were the weighted majority, leaving the
weighted minority unchanged. Therefore, if r is the number of mistakes we make, then

W T+1 ≤ W 1︸︷︷︸
m

·
(

3

4

)r
Combining the two inequalities on W T+1 we get(

1

2

)CBEST

≤ m ·
(

3

4

)r
and taking the log on both sides we obtain

r ≤ 1/ log (4/3)︸ ︷︷ ︸
2.41

(CBEST + logm)

1.2 Minimizing External Regret (general setting)

Consider the following problem. There is a single player playing T rounds against an
adversary, trying to minimize his cost. In each round, the player chooses a probability
distribution over m strategies (also termed actions here). After the player has committed
to a probability distribution, the adversary picks a cost vector fixing the cost for each of
the m strategies.

In round t = 1, . . . , T , the following happens:

• The player picks a probability distribution pt over his strategies.

• The adversary picks a cost vector ct, specifying a cost ct(a) ∈ [0, 1] for every
strategy a.

• The player picks a strategy using his/her probability distribution pt, and
therefore has an expected cost of∑

a

pt(a)ct(a).

At this point the player gets to know the entire cost vector ct.

What is the right benchmark for an algorithm in this setting? The best action sequence
in hindsight achieves a cost of

∑T
t=1 mina c

t
i. However, getting close to this number is

generally hopeless as the following example shows.

Version : October 11, 2019 Page 3 of 8



Algorithmic Game Theory, Fall 2019 Week 4

Example 3. Suppose m = 2 and consider an adversary that chooses ct = (1, 0) if pt1 ≥
1/2 and ct = (0, 1) otherwise. Then the expected cost of the player is at least T/2, while
the best action sequence in hindsight has cost 0.

We will instead compare with the best fixed action over the same period:

CBEST := min
a

T∑
t=1

ct(a) ,

which is nothing but the best fixed action in hindsight. The algorithm A used by the
player to determine the distributions pt’s has cost

CA :=
T∑
t=1

∑
a

pt(a)ct(a)

Definition 4. The difference of this cost and the cost of the best single strategy
in hindsight is called external regret,

RA := CA − CBEST

An algorithm is called no-external-regret algorithm if for any adversary and
all T we have RA = o(T ).

This means that on average the cost of a no-external-regret algorithm approaches the
one of the best fixed strategy in hindsight or even beats it,

CA
T
≤ CBEST

T
+ ε .

The next example shows that there can be no deterministic no-external-regret algorithm.

Example 5 (Randomization is necessary). Suppose there are m ≥ 2 actions. In each
round t the algorithm commits to a strategy a. The adversary can set ct(a) = 1 and
ct(b) = 0 for b 6= a. The total cost of the algorithm will be T , while the cost of the best
fixed action in hindsight is at most T/m.

1.3 The Multiplicative-Weights Algorithm

In this section, we will get to know the multiplicative-weights algorithm (also known as
randomized weighted majority or hedge).

Multiplicative Weights Update Algorithm (MW):

• w1(a)← 1;

• wt+1(a)← wt(a) · (1− η)c
t(a)

At time t choose strategy a with probability

pt(a) =wt(a)/W t where W t =
∑
a

wt(a). (1)
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The algorithm maintains weights wt(a), which are proportional to the probability that
strategy a will be used in round t. After each round, the weights are updated by a
multiplicative factor, which depends on the cost in the current round.

1.4 Analysis

The first step is to show that if the optimum has ‘large cost’ the weight W T is also large:

W T ≥ (1− η)CBEST (2)

Here is the proof of (2): if a∗ denotes the best fixed action for the costs, CBEST =∑T
t=1 c

t(a∗), then

W T ≥ wT (a∗) = w1(a∗)(1− η)c
1(a∗)(1− η)c

2(a∗) · · · (1− η)c
T (a∗) .

The second step is to relate W t+1 to the expected cost of the algorithm at time t:

W t+1 ≤ W t(1− η · Ct
MW ) (3)

The expected cost of the algorithm at step t is

Ct
MW :=

∑
a

pt(a) · ct(a) =
∑
a

wt(a)

W t
· ct(a) .

Now observe that

W t+1 =
∑
a

wt+1(a) =
∑
a

wt(a) · (1− η)c
t(a)

≤
∑
a

wt(a) · (1− η · ct(a)) (4)

=W t − ηW tCt
MW . (5)

where (4) follows from the fact that (1− η)x ≤ (1− ηx) for η ∈ [0, 1
2
] and x ∈ [0, 1].

This step of the proof gives the hypothesis: η ∈ [0, 1
2
] and costs ct(a) in [0, 1].

Now we compare the cost of the algorithm to the optimum:

(1− η)CBEST ≤ W T ≤ W 1

T∏
t=1

(1− η · Ct
MW )

Take the logarithm on both sides

CBEST · ln(1− η) ≤ lnm+
T∑
t=1

ln(1− η · Ct
MW )
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Now we use Taylor expansion:

ln(1− x) = −x− x2

2
− x3

3
− · · ·

in particular, ln(1 − η) ≥ −η − η2 because η ≤ 1/2, and ln(1 − η · Ct
MW ) ≤ −η · Ct

MW ,
thus obtaining

CBEST · (−η − η2) ≤ lnm+
T∑
t=1

−ηCt
MW = lnm− η · CMW

that is

CMW ≤ (1 + η)CBEST +
lnm

η
≤ CBEST + ηT +

lnm

η

where the inequality uses a crude upper bound CBEST ≤ T because ct(a) ≤ 1. Now we
can optimize our parameter η knowing T .

For η =
√

lnm/T the cost of MW satisfies

CMW

T
≤ CBEST

T
+ 2

√
lnm

T

To summarize we have proven the following results.

Theorem 6 (Littlestone and Warmuth, 1994). The multiplicative-weights algorithm, for
any sequence of cost vectors from [0, 1], guarantees

CA ≤ (1 + η)CBEST +
lnm

η
.

Corollary 7. The multiplicative-weights algorithm with η =
√

lnm
T

has external regret at

most 2
√
T lnm = o(T ) and hence is a no-external-regret algorithm.

2 Connection to Coarse Correlated Equilibria

Let us now connect this back to cost-minimization games. For this fix a cost-minimization
game. Without loss of generality, assume that all costs are in [0, 1]. We consider no-
external-regret dynamics defined as follows.

At each time step t = 1, . . . , T :

1. Each player i simultaneously and independently chooses a mixed strategy σti
using a no-external-regret algorithm A.

2. Each player i receives a cost vector cti, where cti(si) is the expected cost of
strategy si when the other players play their chosen mixed strategies:

cti(si) := Es−i∼σ−i
[ci(si, s−i)].
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Do such dynamics converge to Nash equilibria? Not necessarily. However, “on aver-
age” the players play according to an approximate coarse correlated equilibrium.

Proposition 8. Let σ1, . . . , σT be generated by no-external-regret dynamics such that
each player’s external regret is at most εT . Let p be the probability distribution that first
selects a single t ∈ [T ] uniformly at random and then chooses for every player i one si
according to σti . Then p is an ε-coarse correlated equilibrium.

Proof. By definition, for each player i,

Es∼p[ci(s)]− Es∼p[ci(s
′
i, s−i)] =

1

T

T∑
t=1

(Es∼σt [ci(s)]− Es∼σt [ci(s
′
i, s−i)]) ≤ ε ,

where the inequality follows by observing that the first term in the summation is the
expected cost achieved by the regret-minimization algorithm A and the second term is
bounded by the cost achieved by the best fixed cost in hindsight:

T∑
t=1

Es∼σt [ci(s)] = CA and
T∑
t=1

Es∼σt [ci(s
′
i, s−i)] ≥ CBEST . (6)

(Note that CA and CBEST are defined with respect to the costs cti() of the “adversary”
of i, that is, the distributions of all other players.)

Exercise 1. Verify that (6) indeed holds by looking at the definition of CA and CBEST
given above.

Exercise 2. Show that an ε-CCE can be computed in O( lnm
ε2

) iterations of the dynamics
above. Hint: use multiplicative weights update algorithm.

References

The material of this lecture can be also found here:

• Tim Roughgarden, Twenty Lectures on Algorithmic Game Theory, Cambridge Uni-
versity Press, 2016 (Chapter 17 and references therein).

Alternatively, see Tim Roughgarden’s lecture notes, http://theory.stanford.

edu/~tim/f13/f13.pdf

A significant part of this notes is from previous years’ notes by Paul Dütting available
here:

• http://www.cadmo.ethz.ch/education/lectures/HS15/agt_HS2015/
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Exercises

(during the exercise class - 15.10.2019)

We shall discuss and solve together these exercises.

Exercise 3. Each of the following statements is false. Your task is to disprove them
(give a counterexample):

1. Suppose we have a game with no pure Nash equilibria. Then there is a mixed Nash
equilibrium in which each player assigns strictly positive probability to every strategy.

2. Suppose best response converge to a pure Nash equilibrium, no matter the starting
state. Then the game is a potential game.

Exercise 4. Consider this symmetric network congestion game with two players:

s t

1, 5

2, 6

(a) What is the price of anarchy for pure Nash equilibria?

(b) What is the price of anarchy for mixed Nash equilibria?

(c) What is the best price-of-anarchy bound that can be shown via smoothness?
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