Randomized Algorithms and Probabilistic Methods:
Advanced Topics

Exercise 1
Let $Q_1 \subseteq nB$ and let $Q_2 \subseteq n^2B \setminus nB$ with $|Q_1| + |Q_2| = \text{poly}(n)$. A convex body K is consistent (with Q_1 and Q_2) if $Q_1 \subseteq K$ and $K \cap Q_2 = \emptyset$. Let K_1 be the smallest consistent body and K_2 be the largest consistent body with $K_2 \subseteq n^2B$. Show

$$\frac{2^n}{\text{poly}(n)} \cdot \text{vol}(K_1) \leq \text{vol}(K_2).$$

Hint: Show that the convex hull CH of Q_1 is a subset of $\bigcup_{p \in CH} B_2(p/2, ||p/2||)$. In order to do that, show that if a point x is not in $B_2(p/2, ||p/2||)$ for some $p \in CH$, then p is in the open halfspace which is bounded by the hyperplane through x perpendicular to x and contains the origin.

Exercise 2
Let K be a convex body in \mathbb{R}^n such that $B \subseteq K \subseteq 2^{\text{poly}(n)}B$, where B is the infinity norm ball with radius 1. Show that there exists an affine transformation f such that $B \subseteq f(K) \subseteq n^2B$ and that f can be computed in $\text{poly}(n)$ time. You may assume that you can optimize a linear function over K in $\text{poly}(n)$ time.