
Algorithmic Game Theory Summer 2015, Week 3

No-Regret Dynamics

ETH Zürich Paul Dütting

In settings where Nash equilibria are hard to compute, it is at least questionable that players
will reach them. Fortunately, there are other, weaker equilibrium concepts that generalize Nash
equilibria but are easy to compute. We will introduce a hierarchy of equilibrium concepts; and
study natural learning dynamics that are required to meet the less stringent requirements of
two of these equilibrium concepts.

1 Hierarchy of Equilibrium Concepts

We have already seen pure and mixed Nash equilibria in cost-minimization games, and observed
that every pure Nash equilibrium is also a mixed Nash equilibrium.

Definition 3.1. An ε-approximate correlated equilibrium (or ε-correlated equilibrium) of a
cost-minimization game is a probability distribution p on the set of strategy profiles S = Πi∈NSi
such that for every i ∈ N , every strategy si ∈ Si, and every deviation s′i ∈ Si we have

Es∼p [Ci(s) | si] ≤ Es∼p
[
Ci(s

′
i, s−i) | si

]
+ ε .

The case of ε = 0 is called correlated equilibrium.

Importantly, the distribution p in the above definition need not be a product distribution.
A correlated equilibrium protects agains conditional deviations of the form “whenever a player
played si, he now plays s′i.”

Definition 3.2. An ε-approximate coarse correlated equilibrium (or ε-coarse correlated equi-
librium) of a cost-minimization game is a probability distribution p on the set of strategy profiles
S = Πi∈NSi such that for every i ∈ N and every deviation s′i ∈ Si we have

Es∼p [Ci(s)] ≤ Es∼p
[
Ci(s

′
i, s−i)

]
+ ε .

The case of ε = 0 is called coarse correlated equilibrium.

A coarse correlated equilibrium differs from a correlated equilibrium in that it only protects
against unconditional unilateral deviations.

One can show that every mixed Nash equilibrium is also a correlated equilibrium, and every
correlated equilibrium is also a coarse correlated equilibrium. This leaves us with the following
hierarchy of equilibrium concepts:

PNE MNE CE CCE

Figure 1: Venn diagram of equilibrium concepts.

We will first study the dynamics needed to reach a coarse correlated equilibrium. Afterwards
we will give a black-box reduction for correlated equilibria.

Version v0.2 // October 1 Page 1 of 7

Algorithmic Game Theory, Summer 2015 Week 3

2 Minimizing External Regret

Consider the following problem. There is a single player playing T rounds against an adver-
sary, trying to minimize his cost. In each round, the player chooses a probability distribution
over N strategies (also termed actions here). After the player has commited to a probability
distribution, or mixed strategy as we will say, the adversary picks a cost vector fixing the cost
for each of the N strategies.

In round t = 1, . . . , T , the following happens:

• The player picks a probability distribution pt = (pt1, . . . , p
t
N) over his strategies.

• The adversary picks a cost vector `t = (`t1, . . . , `
t
N), where `ti ∈ [0, 1] for all i.

• A strategy at is chosen according to the probability distribution pt. The player incurs this
strategy’s cost and gets to know the entire cost vector.

What is the right benchmark for an algorithm in this setting? The best action sequence in
hindsight achieves a cost of

∑T
t=1 mini∈[N] `

t
i. However, getting close to this number is generally

hopeless as the following example shows.

Example 3.3. Suppose N = 2 and consider an adversary that chooses `t = (1, 0) if pt1 ≥ 1/2
and `t = (0, 1) otherwise. Then the expected cost of the player is at least T/2, while the best
action sequence in hindsight has cost 0.

Instead, we will swap the sum and the minimum, and compare to LTmin = mini∈[N]

∑T
t=1 `

t
i.

That is, instead of comparing to the best action sequence in hindsight, we compare to the best
fixed action in hindsight.

The expected cost of some algorithm A that uses probability distributions p1, . . . , pT against
cost vectors `1, . . . , `T is given as LTA =

∑T
t=1

∑N
i=1 p

t
i`
t
i. The difference of this cost and the cost

of the best single strategy in hindsight is called external regret.

Definition 3.4. The external regret of algorithm A is defined as RTA = LTA − LTmin.

Definition 3.5. An algorithm is called no-external-regret algorithm if for any adversary and
all T we have RTA = o(T).

This means that the average cost per round of a no-external-regret algorithm approaches
the one of the best fixed strategy in hindsight or even beats it.

The next two examples show that there can be no deterministic no-external-regret algorithm,
and provide a lower bound on the speed of convergence.

Example 3.6 (Randomization is necessary). Suppose there are N ≥ 2 actions. In each round
t the algorithm commits to a strategy i. The adversary can set `ti = 1 and `tj = 0 for j 6= i.
The total cost of the algorithm will be T , while the cost of the best fixed action in hindsight is
at most T/N.

Example 3.7 (Lower bound on speed of convergence). Consider the case where N = 2 and an
adversary that, independently in each round t, chooses uniformly at random between `t = (1, 0)
and `t = (0, 1). The expected cost of any algorithm will be exactly T/2. Due to a standard
deviation of Θ(

√
T), however, the best fixed strategy in hindsight has expected cost T/2−Θ(

√
T).

So the external regret will be Θ(
√
T).

A similar argument shows that for N ≥ 2 the external regret achievable by any algorithm
will be at least Θ(

√
T lnN).

Version v0.2 // October 1 Page 2 of 7

Algorithmic Game Theory, Summer 2015 Week 3

2.1 The Multiplicative-Weights Algorithm

By the definition it is not even clear that there are no-external-regret algorithms. Fortunately,
there are. In this section, we will get to know the multiplicative-weights algorithm (also known
as randomized weighted majority or hedge).

The algorithm maintains weights wti , which are proportional to the probability that strategy
i will be used in round t. After each round, the weights are updated by a multiplicative factor,
which depends on the cost in the current round.

Let η ∈ (0, 12]; we will choose η later.

• Initially, set w1
i = 1, for every i ∈ [N].

• At every time t,

– Let W t =
∑N

i=1w
t
i ;

– Choose strategy i with probability pti = wti/W
t;

– Set wt+1
i = wti · (1− η)`

t
i .

Let’s build up some intuition for what this algorithm does. First suppose `ti ∈ {0, 1}. Strate-
gies with cost 0 maintain their weight, while the weight of strategies with cost 1 is multiplied
by (1 − η). So the weight decays exponentially quickly in the number of 1’s. Next consider
the impact of η. Setting η to zero means that we pick a strategy uniformly at random and
continue to do so, on the other hand the higher η the more we punish strategies which incurred
a high cost. So we can think of η as controlling the tradeoff between exploration (small η) and
exploitation (large η).

Theorem 3.8 (Littlestone and Warmuth, 1994). The multiplicative-weights algorithm, for any
sequence of cost vectors from [0, 1], guarantees

LTMW ≤ (1 + η)LTmin +
lnN

η
.

Setting η =
√

lnN
T yields

LTMW ≤ LTmin + 2
√
T lnN .

Corollary 3.9. The multiplicative-weights algorithm with η =
√

lnN
T has external regret at

most 2
√
T lnN = o(T) and hence is a no-external-regret algorithm.

Notice that this matches the above lower bound.

Proof. Let us analyze how the sum of weights W t decreases over time. It holds

W t+1 =
N∑
i=1

wt+1
i =

N∑
i=1

wti(1− η)`
t
i .

Observe that (1− η)` = (1− `η), for both ` = 0 and ` = 1. Furthermore, (1− η)` is a convex
function in `. For ` ∈ [0, 1] this implies (1− η)` ≤ (1− `η).

Version v0.2 // October 1 Page 3 of 7

Algorithmic Game Theory, Summer 2015 Week 3

1− 1
2`

(1− 1
2)`

This gives us

W t+1 ≤
N∑
i=1

wti(1− `tiη) = W t − η
N∑
i=1

wti`
t
i .

Let `t denote the expected cost of MW in step t. It holds `t =
∑N

i=1 `
t
iw

t
i/W

t. Substituting this
into the bound for W t+1 gives

W t+1 ≤ W t − η`tW t = W t(1− η`t) .

As a consequence,

W T+1 ≤ W 1
T∏
t=1

(1− η`t) = N
T∏
t=1

(1− η`t) .

The sum of weights after step T can be upper bounded in terms of the expected costs of MW.
On the other hand, the sum of weights after step T can be lower bounded in terms of the costs
of the best strategy as follows:

W T+1 ≥ max
1≤i≤N

(wT+1
i) = max

1≤i≤N

(
w1
i

T∏
t=1

(1− η)`
t
i

)
= max

1≤i≤N

(
(1− η)

∑T
t=1 `

t
i

)
= (1−η)L

T
min .

Combining the bounds and taking the logarithm on both sides gives us

LTmin ln(1− η) ≤ (lnN) +
T∑
t=1

ln(1− η`t) .

In order to simplify, we will now use the following estimation

−z − z2 ≤ ln(1− z) ≤ − z ,

which holds for every z ∈ [0, 12].

−z − z2
ln(1− z)
−z

Version v0.2 // October 1 Page 4 of 7

Algorithmic Game Theory, Summer 2015 Week 3

This gives us

LTmin(−η − η2) ≤ (lnN) +

T∑
t=1

(−η`t)

= (lnN)− ηLTMW .

Finally, solving for LTMW gives

LTMW ≤ (1 + η)LTmin +
lnN

η
.

3 Connection to Coarse Correlated Equilibria

Let us now connect this back to cost-minimization games. For this fix a cost-minimization game.
Without loss of generality, assume that all costs are in [0, 1]. We consider no-external-regret
dynamics defined as follows.

In each time step t = 1, . . . , T :

1. Each player i simultaneously and independently chooses a mixed strategy σti using a no-
external-regret algorithm.

2. Each player i receives a cost vector cti, where cti(si) is the expected cost of strategy si when
the other players play their chosen mixed strategies. That is, cti(si) = Es−i∼σ−i [Ci(si, s−i)].

Do such dynamics converge to Nash equilibria? Not necessarily. However, “on average” the
players play according to an approximate coarse correlated equilibrium.

Proposition 3.10. Let σ1, . . . , σT be generated by no-external-regret dynamics such that each
player’s external regret is at most εT . Let p be the probability distribution that first selects a
single t ∈ [T] uniformly at random and then chooses for every i ∈ N one si according to σti .
Then p is an ε-coarse correlated equilibrium.

Proof. By definition, for each player i,

Es∼σ[Ci(s)]−Es∼σ[Ci(s
′
i, s−i)] =

1

T

T∑
t=1

(
Es∼σt [Ci(s)]−Es∼σt [Ci(s

′
i, s−i)]

)
≤ ε.

where the inequality follows by observing that the first term in the summation is the expected
cost achieved by the regret-minimization algorithm and the second term is bounded by the cost
achieved by the best fixed cost in hindsight.

Notice that a player that uses the multiplicative-weights algorithm needs only O(lnN
ε2

) iter-
ations to achieve the required bound on the external regret.

4 Swap Regret and Correlated Equilibria

Let’s be even more ambitious and ask whether there is an analogue of the theory that we just
developed for coarse correlated equilibria that applies to correlated equilibria.

For this consider the same dynamics as in the case of external regret, but a different no-
tion of regret. As before denote the expected cost of some algorithm A that uses probability
distributions p1, . . . , pT against cost vectors `1, . . . , `t by LTA =

∑T
t=1

∑N
i=1 p

t
i`
t
i.

A switching function is a function δ : [N]→ [N]. The expected cost under a fixed switching
function δ is LTδ =

∑T
t=1

∑N
i=1 p

t
i`
t
δ(i). Let LTswap = minδ L

T
δ .

Version v0.2 // October 1 Page 5 of 7

Algorithmic Game Theory, Summer 2015 Week 3

Definition 3.11. The swap regret of an algorithm A is defined as RTswap = LTA − LTswap.

Definition 3.12. An algorithm is called no-swap-regret algorithm if for any adversary and all
T we have RTswap = o(T).

It is not difficult to show a result analogous to Proposition 3.10 for swap regret and correlated
equilibria; so all that we are left with is to show that no-swap-regret algorithms do exist.

4.1 A Black-Box Reduction

It turns out that there is a surprisingly clean and simple reduction from the problem of finding
a no-swap-regret algorithm to that of finding a no-external-regret algorithm.

Theorem 3.13 (Blum and Mansour, 2007). If there is a no-external-regret algorithm, then
there is a no-swap-regret algorithm.

Proof. We construct the algorithm for swap regret from N algorithms for external regret. The
basic idea is to have one algorithm Ai for each action ai, which is responsible for protecting
against profitable deviations from action ai to some other action.

At time t = 1, . . . , N :

1. Receive distributions q1,t, . . . , qN,t over actions from algorithms A1, . . . ,AN .

2. Compute and output a consensus distribution pt.

3. Receive a cost vector `t from the adversary.

4. Give algorithm Ai the cost vector pti`
t.

We will leave the definition of the consensus distribution and how to compute it open for
now; instead we will re-engineer how this distribution needs to look like.

Let’s first take the perspective of the no-swap-regret algorithm. The expected cost of the
no-swap-regret algorithm is

T∑
t=1

N∑
j=1

ptj`
t
j . (1)

The expected cost under a fixed switching function δ is

T∑
t=1

N∑
j=1

ptj`
t
δ(j). (2)

Our goal is to show that for every switching function “(1)” ≤ “(2)”+ o(T).
Let’s switch to the perspective of the no-external regret algorithm Ai. For any fixed strategy

k we know that

T∑
t=1

N∑
j=1

qi,tj (pti`
t
j) ≤

T∑
t=1

pti`
t
k + o(T). (3)

The left-hand side is the expected cost of algorithm Ai, and it is at most the right-hand side
because we assumed Ai to be a no-external-regret algorithm.

Now fix a switching function δ and sum inequality (3) over all i with k instantiated as δ(i).
Then,

T∑
t=1

N∑
j=1

N∑
i=1

qi,tj (pti`
t
j) ≤

T∑
t=1

N∑
i=1

pti`
t
δ(i) + o(T). (4)

Version v0.2 // October 1 Page 6 of 7

Algorithmic Game Theory, Summer 2015 Week 3

Note that the right-hand side is identical to equality (2), up to the additive error term o(T).
So it remains to link the left-hand side to equality (1). Specifically, we would like to argue that

ptj =
N∑
i=1

qi,tj p
t
i, (5)

in which case the two would be indentical and we would be done.
In fact, equation (5) looks familiar. It looks like an equation defining a stationary distribu-

tion of a Markov chain. This is the key insight, and the basic idea behind the definition of the
consensus distribution.

Namely, from algorithms A1, . . . ,AN at time t we will construct the following Markov chain:

• The set of states is A = {1, . . . , N}.

• For every i, j ∈ A the transition probability from i to j is qi,tj .

Then pt satisfies (5) if and only if it is the stationary distribution of this Markov chain. At
least one such distribution exists and can be computed via an eigenvector computation. This
completes the proof.

Recommended Literature

• A. Blum and Y. Mansour. Learning, Regret Minimization, and Equilibria. In: Algorith-
mic Game Theory, N. Nisan et al., pages 79–101, 2007. (General reference)

• Tim Roughgarden’s lecture notes, Chapters 17 and 18, http://theory.stanford.edu/

~tim/f13/f13.pdf (General reference)

• N. Littlestone, M. Warmuth. The Weighted Majority Algorithm. Information and Com-
putation, 108(2):212–261, 1994. (The external regret result)

• A. Blum and Y. Mansour. From external to internal regret. Journal of Machine Learning
Research, 8:13071324, 2007. (Reduction from swap to external regret)

• G. H. Golub and C. F. van Loan. Matrix Computations, 4th edition. Johns Hopkins
University Press, 2012. (Existence and poly-time computation of a stationary distribution
of a Markov chain)

Version v0.2 // October 1 Page 7 of 7

http://theory.stanford.edu/~tim/f13/f13.pdf
http://theory.stanford.edu/~tim/f13/f13.pdf

	Hierarchy of Equilibrium Concepts
	Minimizing External Regret
	The Multiplicative-Weights Algorithm

	Connection to Coarse Correlated Equilibria
	Swap Regret and Correlated Equilibria
	A Black-Box Reduction

