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Price of Anarchy in Congestion Games

ETH Zürich Paul Dütting

One of the main goals of algorithmic game theory is to quantify the performance of a system
of selfish agents. Usually the “social cost” incurred by all players is higher than if there is a
central authority taking charge to minimize social cost. We will develop tools that will allow us
to (upper and lower) bound the potential increase.

Here we will define social cost as the sum of all players’ cost; formally, for a state s let
cost(s) =

∑
i∈N ci(s) denote the social cost of s. Sometimes it makes more sense to consider

the maximum cost incurred by any player.

1 Motivating Example

Example 4.1 (Pigou’s Example, Discrete Version). Consider the following symmetric network
congestion game with four players.

s t

1, 2, 3, 4

4, 4, 4, 4

There are five kinds of states:

(a) all players use the top edge, social cost: 16

(b) three players use the top edge, one player uses the bottom edge, social cost: 13

(c) two players use the top edge, two players use the bottom edge, social cost: 12

(d) one player uses the top edge, three players use the bottom edge, social cost: 13

(e) all players use the bottom edge, social cost: 16

Observe that only states of kind (a) and (b) can be pure Nash equilibria. The social cost,
however, is minimized by states of kind (c). Therefore, when considering pure Nash equilibria,
due to selfish behavior, we lose up to a factor of 16

12 and at least a factor of 13
12 .

More generally, we refer to the worst-case ratio between the social cost at equilibrium and
the optimal social cost as the price of anarchy. The best-case ratio between these two quantities
is the price of stability.

2 Definition

The price of anarchy and the price of stability of course depend on what kind of equilibria we
consider. To define these two notions formally, we therefore assume that there is a set Eq of
probability distributions over the set of states S, which correspond to equilibria. In the case of
pure Nash equilibria, each of these distributions concentrates all its mass on a single point.
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Definition 4.2. Given a cost-minimization game, let Eq be a set of probability distributions
over the set of states S. For some probability distribution p, let cost(p) =

∑
s∈S p(s)cost(s) be

the expected social cost. The price of anarchy for Eq is defined as

PoAEq =
maxp∈Eq cost(p)

mins∈S cost(s)
.

The price of stability for Eq is defined as

PoSEq =
minp∈Eq cost(p)

mins∈S cost(s)
.

Given the respective equilibria exist, we have

1 ≤ PoSCCE ≤ PoSCE ≤ PoSMNE ≤ PoSPNE ≤ PoAPNE ≤ PoAMNE ≤ PoACE ≤ PoACCE .

3 Smooth Games

A very helpful technique to derive upper bounds on the price of anarchy is smoothness.

Definition 4.3. A game is called (λ, µ)-smooth for λ > 0 and µ < 1 if, for every pair of states
s, s∗ ∈ S, we have ∑

i∈N
ci(s

∗
i , s−i) ≤ λ · cost(s∗) + µ · cost(s) .

Observe that this condition needs to hold for all states s, s∗ ∈ S, as opposed to only pure
Nash equilibria or only social optima. We consider the cost that each player incurs when
unilaterally deviating from s to his strategy in s∗. If the game is smooth, then we can upper-
bound the sum of these costs in terms of the social cost of s and s∗.

Smoothness directly gives a bound for the price of anarchy, even for coarse correlated equi-
libria.

Theorem 4.4. In a (λ, µ)-smooth game, the PoA for coarse correlated equilibria is at most

λ

1− µ
.

Proof. Let s be distributed according to a coarse correlated equilibrium p, and let s∗ be an
optimum solution, which minimizes social cost. Note that cost(p) = Es∼p [cost(s)]. Then:

Es∼p [cost(s)] =
∑
i∈N

Es∼p [ci(s)] (by linearity of expectation)

≤
∑
i∈N

Es∼p [ci(s
∗
i , s−i)] (as p is a CCE)

= Es∼p

[∑
i∈N

ci(s
∗
i , s−i)

]
(by linearity of expectation)

≤ Es∼p [λ · cost(s∗) + µ · cost(s)] (by smoothness)

On both sides subtract µ ·Es∼p [cost(s)], this gives

(1− µ) ·Es∼p [cost(s)] ≤ λ · cost(s∗)

and rearranging yields
Es∼p [cost(s)]

cost(s∗)
≤ λ

1− µ
.
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That is, in a (λ, µ)-smooth game, we have

PoAPNE ≤ PoAMNE ≤ PoACE ≤ PoACCE ≤
λ

1− µ
.

For many classes of games, there are choices of λ and µ such that all relations become equalities.
These games are referred to as tight.

4 Tight Bound for Affine Delay Functions

We next provide a tight bound on the price of anarchy for (non-decreasing) affine delay functions
of the form dr(nr(S)) = ar · nr(S) + br, where ar, br ≥ 0.

Theorem 4.5. Every congestion game with affine delay functions is
(
5
3 ,

1
3

)
-smooth. Thus, the

PoA is upper bounded by 5
2 = 2.5, even for coarse-correlated equilibria.

We use the following lemma:

Lemma 4.6 (Christodoulou, Koutsoupias, 2005). For all integers y, z ∈ Z we have

y(z + 1) ≤ 5

3
· y2 +

1

3
· z2 .

Proof. Consider the case y = 1. Note that, as z is an integer, we have (z − 1)(z − 2) ≥ 0.
Therefore, we have

z2 − 3z + 2 = (z − 1)(z − 2) ≥ 0 ,

which implies

z ≤ 2

3
+

1

3
z2 ,

and therefore

y(z + 1) = z + 1 ≤ 5

3
+

1

3
z2 =

5

3
y2 +

1

3
z2 .

Now consider the case y > 1. We now use

0 ≤

(√
3

4
y −

√
1

3
z

)2

=
3

4
y2 +

1

3
z2 − yz .

Using y ≤ y2

2 , we get

y(z + 1) = yz + y ≤ 3

4
y2 +

1

3
z2 +

1

2
y2 ≤ 5

3
y2 +

1

3
z2 .

Finally, for the case y ≤ 0, observe that the claim is trivial for y = 0 or z ≥ −1, because
y(z+1) ≤ 0 ≤ 5

3 ·y
2+ 1

3 ·z
2. In the case that y < 0 and z < −1, we use that y(z+1) ≤ |y|(|z|+1)

and apply the bound for positive y and z shown above.

Proof of Theorem 4.5. Given two states s and s∗, we have to bound∑
i∈N

ci(s
∗
i , s−i) .

We have
ci(s

∗
i , s−i) =

∑
r∈s∗i

dr(nr(s
∗
i , s−i)) .
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Furthermore, as all dr are non-decreasing, we have dr(nr(s
∗
i , s−i)) ≤ dr(nr(s) + 1). This way,

we get ∑
i∈N

ci(s
∗
i , s−i) ≤

∑
i∈N

∑
r∈s∗i

dr(nr(s) + 1) .

By exchanging the sums, we have∑
i∈N

∑
r∈s∗i

dr(nr(s) + 1) =
∑
r∈R

∑
i:r∈s∗i

dr(nr(s) + 1) =
∑
r∈R

nr(s
∗)dr(nr(s) + 1) .

To simplify notation, we write nr for nr(s) and n∗r for nr(s
∗). Recall that delays are dr(nr) =

arnr + br. In combination, we get∑
i∈N

ci(s
∗
i , s−i) ≤

∑
r∈R

(ar(nr + 1) + br)n
∗
r ,

Let us consider the term for a fixed r ∈ R. We have

(ar(nr + 1) + br)n
∗
r = ar(nr + 1)n∗r + brn

∗
r .

Lemma 4.6 implies that

(nr + 1)n∗r ≤
1

3
n2r +

5

3
(n∗r)

2 .

Thus, we get

(ar(nr + 1) + br)n
∗
r ≤

1

3
arn

2
r +

5

3
ar(n

∗
r)

2 + brn
∗
r

≤ 1

3
arn

2
r +

1

3
brnr +

5

3
ar(n

∗
r)

2 +
5

3
brn
∗
r

=
1

3
(arnr + br)nr +

5

3
(arn

∗
r + br)n

∗
r ,

where in the second step we used that br ≥ 0. Summing up these inequalities for all resources
r ∈ R, we get∑

r∈R
(ar(nr + 1) + br)n

∗
r ≤ 5

3

∑
r∈R

(arn
∗
r + br)n

∗
r +

1

3

∑
r∈R

(arnr + br)nr

=
5

3
· cost(s∗) +

1

3
· cost(s) ,

which shows
(
5
3 ,

1
3

)
-smoothness.

Theorem 4.7. There are congestion games with affine delay functions whose price of anarchy
for pure Nash equilibria is 5

2 .

Proof sketch. We consider the following (asymmetric) network congestion game. Notation 0 or
x on an edge means that dr(x) = 0 or dr(x) = x for this edge.

u

v w

x

0

x

0

x

x
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There are four players with different source sink pairs. Refer to this table for a socially
optimal state of social cost 4 and a pure Nash equilibrium of social cost 10.

player source sink strategy in OPT cost in OPT strategy in PNE cost in PNE

1 u v u→ v 1 u→ w → v 3

2 u w u→ w 1 u→ v → w 3

3 v w v → w 1 v → u→ w 2

4 w v w → v 1 w → u→ v 2

5 Price of Anarchy in Non-Atomic Network Congestion Games

Let us return to the motivating example from the first lecture, Braess’ Paradox in road networks.
This example differed from the congestion games that we studied so far in that we assumed
that there is one unit of players that wants to travel from s to t. Also recall that in the specific
example that we discussed the socially optimal solution had cost 3/2, while the equilibrium cost
was 2. So the price of anarchy is at least 4/3.

s

b

a

t

c(x) = x

c(x) = 1

c(x) = 0

c(x) = 1

c(x) = x

Figure 1: Braess’ paradox.

In the remainder, we will formally define this class of network congestion games, which are
referred to as “non-atomic” as individual players are infinitesimally small. We will then define
what we mean by a Nash equilibrium and show a matching upper bound on the price of anarchy
with respect to Nash equilibria.

Definition 4.8. A non-atomic network congestion game is defined by

• a directed graph G = (V,E),

• there are K player types, the fraction of players having type k is rk, all players of type k
share a source sk and a target tk,

• the strategy set of a player i of type k is the set of paths Pk from sk to tk, let P = ∪kPk,

• a strategy profile induces a (feasible) flow vector (fP )P∈P , fe =
∑

P∈P:e∈P fP ,

• we say that a flow vector is feasible if it satisfies the flow demands and flow conservation,

• we have delay functions de : [0, 1]→ R, the edge delay is de(f) = de(fe) and the path delay
is dP (f) =

∑
e∈P de(f),

• players seek to minimize the delay dP (f) on the path P they have chosen,

• the social cost is C(f) =
∑

e∈E fe · de(f).

The main difference between this non-atomic version and the atomic version that we studied
before is that a player’s strategy choice does not affect the delays that he faces. This motivates
the following definition of a Nash equilibrium.
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Definition 4.9. A feasible flow vector f is a Nash equilibrium iff for every player type k ∈ [K],
every two paths P1, P2 ∈ Pk with fP1 > 0, we have dP1(f) ≤ dP2(f).

Another way to think about this is that a player who has chosen path P1 does not want to
unilaterally deviate to path P2 instead.

Theorem 4.10. The price of anarchy with respect to Nash equilibria in non-atomic network
congestion games with (non-decreasing) affine delay functions is at most 4/3.

Proof. Fix a Nash flow f and consider any other flow f ′. Note that

C(f) =
∑
p∈P

fP · dP (f)

≤
∑
P∈P

f ′P · dP (f)

=
∑
e∈E

f ′e · de(f)

= C(f ′) +
∑
e∈E

f ′e(de(f)− de(f ′)),

where the inequality follows from the fact that f uses only paths with minimal delays, while f ′

may also use other (non-optimal) paths.
We claim that

∑
e∈E f

′
e(de(f) − de(f

′)) is upper bounded by C(f)/4. For this we will
pessimistically ignore negative terms, and only consider positive terms. The following figure
illustrates that each positive term can be upper bounded by 1/4 · fe · de(f). The shaded area
is f ′e(de(f)− de(f ′)). Since we assumed br ≥ 0 it can be at most one quarter of the area of the
entire rectangle, i.e., fe · de(f).

de(f)

de(f
′)

be ≥ 0

f ′ f

We conclude that

C(f) ≤ C(f ′) +
∑
e∈E

f ′e(de(f)− de(f ′)) ≤ C(f ′) +
∑
e∈E

1

4
fede(f) = C(f ′) +

1

4
C(f).

Rearranging this shows the claim.
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