
Algorithmic Game Theory Summer 2016, Week 3

Mixed and Correlated Equilibria

and

Regret Minimization

ETH Zürich Paolo Penna

In this lecture we consider more general equilibrium concepts, namely, mixed and (coarse)
correlated equilibria. We extend the definition of price of anarchy to these equilibria and
study under which conditions the results on pure Nash equilibria still hold. Our main
motivation is

Pure Nash equilibria may not exist in some games, and even when they exist
they are hard to compute (so it is unlikely that players will be able to always
converge to one). In these cases, the bounds on the price of anarchy may be
not meaningful.

This lecture resolves this ‘contradiction’ by showing that coarse correlated equilibria can
be computed efficiently (by the players themselves).

1 Pure, Mixed, and Correlated Equilibria

We are going to study extensions of the pure Nash equilibria introduced in the previous
lecture. Before giving the formal definitions, we start building some intuition by looking
at simple games.

Pure Nash Equilibria (PNE): Each player chooses one strategy and no player
has a reason to deviate.
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NO PNE (best response cycle)

Coordination Game
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PNE: (AA) and (BB)

Mixed Nash Equilibria (MNE): Each player chooses a probability distri-
bution over his/her strategies, and no player has a reason to switch to another
strategy.
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The numbers in brackets are the probabilities that the player chooses the corresponding
strategy.
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Consider the row player given the probabilities used by the other player. The row player
is indifferent between the two strategies that he/she is choosing randomly:

• Switch to A: utility = 2× 1
3

• Switch to B: utility = 1× 2
3

• Play mixed strategy ‘1/2-1/2’: utility = 2
3

More precisely, these are expected utilities :

ui(p) :=
∑
s∈S

p(s) · ui(s) = Es∼p [ui(s)] .

In the games above, we can say that

ui(p) ≥ ui(s
′
i, p−i)

for s′i ∈ {A,B}, where (s′i, p−i) is the probability distribution in which i plays s′i with
probability 1.

Coarse Correleted Equilibria: A trusted device chooses randomly one state
(one strategy per player), and no player has a reason to switch to another strategy:

ui(p) ≥ ui(s
′
i, p−i)

For cost-minimization games,

ci(p) ≤ ci(s
′
i, p−i)
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The trusted device uses this distribution over the four states (numbers in brackets):

A B

A 1
2

(1/3) 0
0

(0)

B 0
0

(0) 1
1

(2/3)

CCE
Again, if a player decides a priory to play A (or B), his/her expected utility is not going
to improve. Given that the other player(s) agree to accept the device choice, there is no
reason to not do so.

Definition 1. An ε-approximate coarse correlated equilibrium (or ε-coarse correlated
equilibrium) of a cost-minimization game is a probability distribution p on the set of
states S such that for every player i and every deviation s′i ∈ Si we have

Es∼p [ci(s)] ≤ Es∼p [ci(s
′
i, s−i)] + ε .

The case of ε = 0 is called coarse correlated equilibrium.

Note that the distribution p in the above definition need not be a product distribution
like in mixed Nash equilibria.

A stronger notion is that of correlated equilibria (below). Intuitively, it requires that
a player still does not want to deviate even after receiving a ‘signal’ si by the trusted
device (like in a traffic light, if we see ’Red” we know that the other cars crossing our
street received ‘Green’).

Definition 2. An ε-approximate correlated equilibrium (or ε-correlated equilibrium) of
a cost-minimization game is a probability distribution p on the set of states S such that
for every player i, every strategy si ∈ Si, and every deviation s′i ∈ Si we have

Es∼p [ci(s) | si] ≤ Es∼p [ci(s
′
i, s−i) | si] + ε .

The case of ε = 0 is called correlated equilibrium.

Every mixed Nash equilibrium is also a correlated equilibrium, and every correlated
equilibrium is also a coarse correlated equilibrium. This leaves us with the following
hierarchy of equilibrium concepts:

PNE MNE CE CCE
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Unlike pure Nash equilibria, mixed Nash equilibria always exist:

Theorem 3 (Nash). Every finite game has a mixed Nash equilibrium.

We next extend the price of anarchy to these equilibria concepts. Because finding a
mixed Nash equilibrium is also computationally hard, we will derive a natural algorithm
for computing the most general equilibria (coarse correlated).

2 Price of Anarchy

We consider cost-minimization games like in the previous lecture. That is, each player i
has a cost ci(s) and the social cost of a state s is the sum of all players’ costs

cost(s) =
∑
i

ci(s).

When dealing with mixed and correlated equilibria, it is natural to consider the expected
social cost :

cost(p) :=
∑
s∈S

p(s)cost(s) = Es∼p[cost(s)] . (1)

The Price of Anarchy compares the worst equilibrium with the optimum. In par-
ticular, we will take the worst equilibrium of a certain type and consider its expected
cost:

Definition 4 (Price of Anarchy). For a cost-minimization game, the price of
anarchy for Eq is defined as

PoAEq =
maxp∈Eq cost(p)

mins∈S cost(s)
,

where cost(p) is the expected social cost (1) and Eq is a set of probability distribu-
tions over the set of states S.

Observation 5. Take Eq = PNE and observe that this is the Price of Anarchy for pure
Nash equilibria in the previous lecture.

Observation 6. The hierachy of equilibrium concepts says that the price of anarchy can
get worst when we consider more general notions of equilibria:

PoAPNE ≤ PoAMNE ≤ PoACE ≤ PoACCE .

Recall that for congestion games with affine latency functions we have proven

PoAPNE = 5/2

but we also know that pure Nash equilibria are hard to compute.
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What do we do with the bounds from previous lecture?

It turns out that whatever bounds we obtained with the “smooth framework”, auto-
matically extend to all equilibria in the hierarchy above. Recall the definition of smooth
game from last lecture:

Definition 7. A game is called (λ, µ)-smooth for λ > 0 and µ < 1 if, for every pair of
states s, s∗ ∈ S, we have∑

i

ci(s
∗
i , s−i) ≤ λ · cost(s∗) + µ · cost(s) .

Observe that this condition needs to hold for all states s, s∗ ∈ S, as opposed to only
pure Nash equilibria or only social optima. The following theorem says that the bounds
for PNE obtained via this technique extend to all equilibria (in particular to the most
general ones):

Theorem 8. In a (λ, µ)-smooth game, the PoA for coarse correlated equilibria (PoACCE)
is at most

λ

1− µ
.

Proof Idea. The proof for pure Nash equilibria (lecture 2) can be adapted. Let s be a
coarse correlated equilbrium and s∗ be an optimum solution, which minimizes social cost.
Then:

cost(p) = Es∼p[cost(s)] = Es∼p

[∑
i

ci(s)

]
(definition of social cost)

... (Exercise!)

≤ λ · cost(s∗) + µ · cost(p)

and by rearranging the terms we get

cost(s)

cost(s∗)
≤ λ

1− µ

for any s ∈ CCE and any social optimum s∗. That is, PoACCE ≤ λ
1−µ .

For congestion games with affine delay functions, PNE are hard to compute.

The above result says that the price of anarchy for coarse correlated equilibria is still
5/2 for these games. In the following sections we show that coarse correlated equilibria
are easy to compute instead.
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3 Regret Minimization

The next two sections will introduce the main ideas towards the general definition of
regret-minimization and the algorithm. You can jump directly to Section 3.2 for the
general results.

3.1 Experts Problem

Consider this setting. We have m ‘experts’ that tell us if tomorrow it will rain (R) or
be sunny (S). One of these expert is is a real expert, meaning that he/she is never
wrong. We do not know who is the expert. Every day we make a prediction based on
what the experts tell us. If our prediction is wrong, we have a cost equal to 1, otherwise
we incur no cost. Here is one algorithm

Majority Algorithm (MAJ): Each day do the following:

• Take the majority of the experts’ advice

• Every time an expert is wrong, discard him/her from future consideration;

Claim 9. The number of mistakes is at most logm, where m is the number of experts.

Proof. Every mistake will half the number of experts that the algorithm takes into ac-
count.

What if the best expert makes some mistakes?

We could restart the previous algorithm every time we run out of experts. If the (best)
expert makes r∗ errors, we are going to make at most r∗ logm errors: After each phase
(we discarded all experts), the best expert must have done at least one mistake. So we
cannot restart more than r∗ times, and a phase will cost us at most logm (as before).

The main idea of next algorithm is to keep a weight for each expert and reduce
his/her weight whenever he/she was wrong.

Weighted Majority (WM): Each day do the following:

• w1(a)← 1 (initial weights)

• wt+1(a)← wt(a) · 1
2

if a errs at step t

Do weighted majority to decide S or R at step t;

Claim 10. The number of mistakes is at most

(2.41)CBEST + logm,

where m is the number of experts and CBEST is the number of mistakes of the best expert.
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Proof. We work with the following quantities:

W t :=
∑
a

wt(a)

and show two things:

1. If the best expert does not make many mistakes, in the end W T is not too small;

2. Every time we make an error, then W t drops exponentially.

The intuition is that we cannot do too many mistakes, if the best expert does few mistakes.
Here is the first step: every time the best expert a∗ makes one mistake, we half its weight,
therefore

W T+1 ≥ wT+1(a∗) = w1(a∗)︸ ︷︷ ︸
1

·
(

1

2

)CBEST

.

We claim that every time we make a mistake at step t, we have

W t+1 ≤ W t

(
3

4

)
because we will half the weights of W t which were the weighted majority, leaving the
weighted minority unchanged. Therefore, if r is the number of mistakes we make, then

W T+1 ≤ W 1︸︷︷︸
m

·
(

3

4

)r
Combining the two inequalities on W T+1 we get(

1

2

)CBEST

≤ m ·
(

3

4

)r
and taking the log on both sides we obtain

r ≤ 1/ log (4/3)︸ ︷︷ ︸
2.41

CBEST + logm

3.2 Minimizing External Regret (General Setting)

Consider the following problem. There is a single player playing T rounds against an
adversary, trying to minimize his cost. In each round, the player chooses a probability
distribution over m strategies (also termed actions here). After the player has committed
to a probability distribution, the adversary picks a cost vector fixing the cost for each of
the m strategies.
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In round t = 1, . . . , T , the following happens:

• The player picks a probability distribution pt over his strategies.

• The adversary picks a cost vector ct, specifying a cost ct(a) ∈ [0, 1] for every
strategy a.

• The player picks a strategy using his/her probability distribution pt, and
therefore has an expected cost of

pt(a)ct(a).

At this point the player gets to know the entire cost vector ct.

What is the right benchmark for an algorithm in this setting? The best action sequence
in hindsight achieves a cost of

∑T
t=1 mina c

t
i. However, getting close to this number is

generally hopeless as the following example shows.

Example 11. Suppose m = 2 and consider an adversary that chooses ct = (1, 0) if
pt1 ≥ 1/2 and ct = (0, 1) otherwise. Then the expected cost of the player is at least T/2,
while the best action sequence in hindsight has cost 0.

We will instead compare with the best fixed action over the same period:

CBEST := min
a

T∑
t=1

ct(a) ,

which is nothing but the best fixed action in hindsight. The algorithm A used by the
player to determine the distributions pt’s ha cost

CA :=
T∑
t=1

pt(a)ct(a)

Definition 12. The difference of this cost and the cost of the best single strategy
in hindsight is called external regret,

RA := CA − CBEST

An algorithm is called no-external-regret algorithm if for any adversary and
all T we have RA = o(T ).

This means that on average the cost of a no-external-regret algorithm approaches the
one of the best fixed strategy in hindsight or even beats it,

CA
T
≤ CBEST

T
+ ε .

The next example shows that there can be no deterministic no-external-regret algorithm.

Example 13 (Randomization is necessary). Suppose there are m ≥ 2 actions. In each
round t the algorithm commits to a strategy a. The adversary can set ct(a) = 1 and
ct(b) = 0 for b 6= a. The total cost of the algorithm will be T , while the cost of the best
fixed action in hindsight is at most T/m.
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3.3 The Multiplicative-Weights Algorithm

In this section, we will get to know the multiplicative-weights algorithm (also known as
randomized weighted majority or hedge).

The algorithm maintains weights wt(a, which are proportional to the probability that
strategy a will be used in round t. After each round, the weights are updated by a
multiplicative factor, which depends on the cost in the current round.

Multiplicative Weights Update Algorithm (MW):

• w1(a)← 1;

• wt+1(a)← wt(a) · (1− η)c
t(a)

At time t choose strategy a with probability

pt(a) =wt(a)/W t where W t =
∑
a

wt(a). (2)

3.4 Analysis

The first step is to show that if the optimum has ‘large cost’ the weight W T is also large:

W T ≥ (1− η)CBEST (3)

Here is the proof of (3): if a∗ denotes the best fixed action for the costs, CBEST =∑T
t=1 c

t(a∗), then

W T ≥ wT (a∗) = w1(a∗)(1− η)c
1(a∗)(1− η)c

2(a∗) · · · (1− η)c
T (a∗)

The second step is to relate W t+1 to the expected cost of the algorithm at time t:

W t+1 ≤ W t(1− η · Ct
MW ) (4)

The expected cost of the algorithm at step t is

Ct
MW :=

∑
a

pt(a) · ct(a) =
∑
a

wt(a)

W t
· ct(a)

Now observe that

W t+1 =
∑
a

wt+1(a) =
∑
a

wt(a) · (1− η)c
t(a)

≤
∑
a

wt(a) · (1− η · ct(a)) (5)

=W t − ηW tCt
MW (6)

where (5) follows from the fact that (1− η)x ≤ (1− ηx) for η ∈ [0, 1
2
] and x ∈ [0, 1].
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This step of the proof gives the hypothesis: η ∈ [0, 1
2
] and costs ct(a) in [0, 1].

Now we compare the cost of the algorithm to the optimum:

(1− η)CBEST ≤ W T ≤ W 1

T∏
t=1

(1− η · Ct
MW )

Take the logarithm on both sides

CBEST · ln(1− η) ≤ lnm+
T∑
t=1

ln(1− η · Ct
MW )

Now we use Taylor expansion:

ln(1− x) = −x− x2

2
− x3

3
− · · ·

in particular, ln(1 − η) ≥ −η − η2 because η ≤ 1/2, and ln(1 − η · Ct
MW ) ≤ −η · Ct

MW ,
thus obtaining

CBEST · (−η − η2) ≤ lnm+
T∑
t=1

−ηCt
MW = lnm− η · CMW

that is

CMW ≤ (1 + η)CBEST +
lnm

η
≤ CBEST + ηT +

lnm

η

where the inequality uses a crude upper bound CBEST ≤ T because ct(a) ≤ 1. Now we
can optimize our parameter η knowing T .

For η =
√

lnm/T the cost of MW satisfies

CMW

T
≤ CBEST

T
+ 2
√
T lnm

To summarize we have proven the following results.

Theorem 14 (Littlestone and Warmuth, 1994). The multiplicative-weights algorithm,
for any sequence of cost vectors from [0, 1], guarantees

CA ≤ (1 + η)CBEST +
lnm

η
.

Corollary 15. The multiplicative-weights algorithm with η =
√

lnm
T

has external regret

at most 2
√
T lnm = o(T ) and hence is a no-external-regret algorithm.
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4 Connection to Coarse Correlated Equilibria

Let us now connect this back to cost-minimization games. For this fix a cost-minimization
game. Without loss of generality, assume that all costs are in [0, 1]. We consider no-
external-regret dynamics defined as follows.

In each time step t = 1, . . . , T :

1. Each player i simultaneously and independently chooses a mixed strategy σti
using a no-external-regret algorithm.

2. Each player i receives a cost vector cti, where cti(si) is the expected cost of
strategy si when the other players play their chosen mixed strategies:

cti(si) := Es−i∼σ−i
[ci(si, s−i)].

Do such dynamics converge to Nash equilibria? Not necessarily. However, “on aver-
age” the players play according to an approximate coarse correlated equilibrium.

Proposition 16. Let σ1, . . . , σT be generated by no-external-regret dynamics such that
each player’s external regret is at most εT . Let p be the probability distribution that first
selects a single t ∈ [T ] uniformly at random and then chooses for every player i one si
according to σti . Then p is an ε-coarse correlated equilibrium.

Proof. By definition, for each player i,

Es∼p[ci(s)]− Es∼p[ci(s
′
i, s−i)] =

1

T

T∑
t=1

(Es∼σt [ci(s)]− Es∼σt [ci(s
′
i, s−i)]) ≤ ε.

where the inequality follows by observing that the first term in the summation is the
expected cost achieved by the regret-minimization algorithm and the second term is
bounded by the cost achieved by the best fixed cost in hindsight.

Notice that a player that uses the multiplicative-weights algorithm needs only O( lnm
ε2

)
iterations to achieve the required bound on the external regret.

Recommended Literature

• Tim Roughgarden’s lecture notes, http://theory.stanford.edu/~tim/f13/f13.
pdf (General reference)

– Chapter 13 for definitions and hierachy of equilibrium concepts;

– Chapter 17 for regret-minimization algorithm;

• A. Blum and Y. Mansour. Learning, Regret Minimization, and Equilibria. In:
Algorithmic Game Theory, N. Nisan et al., pages 79–101, 2007. (General reference)
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• T. Roughgarden. Intrinsic Robustness of the Price of Anarchy. STOC 2009.
(Smoothness Framework and PoA)

A significant part of this notes is from last year’s notes by Paul Dütting available here:

• http://www.cadmo.ethz.ch/education/lectures/HS15/agt_HS2015/

The analysis of the MW algorithm follows Roughgarden’s lecture notes, while the intro-
duction via the experts problem is from here:

• http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/

lecture16.pdf
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