
Algorithmic Game Theory Summer 2016, Week 5

Truthful One-Parameter Mechanisms

ETH Zürich Paolo Penna

In this lecture we introduce a second technique for designing truthful mechanisms, in
addition to the class of VCG mechanisms of the previous lecture. If you look carefully to
the definition, you see that the algorithm is required to minimize the social cost, that
is, the sum of all players’ costs.

1 A simple problem (warm up)

Consider the following game. We have two jobs of a certain size we want to allocate to
the two links and our optimization goal is to minimize the maximum cost among the
players. For instance

10

20
s t

1
2

where 10 and 20 are the cost for processing one unit of work, in the corresponding edge.
So in this solution, both players have cost 20. In every other solution, one of the two
players will have a strictly larger cost.

If we run VCG the solution is not what we want (it minimizes sum of costs)

Exercise 1. Try to use the formula of the VCG payments, but combined with the algo-
rithm which minimizes the maximum cost in the previous example. Check that one of the
two players can improve his/her utility by cheating, i.e., this naive approach does not give
a truthful mechanism for our problem (assume the numbers on the edges are true costs).

Truthful mechanism minimizing maximum cost?

1.1 Intuition (monotonicity)

We gather some intuition by comparing the problem above with the problems studied in
the previous lecture. In particular we look at what the algorithm does for the players:

Shortest Path: (2nd price auction, VCG)

c1

c2
s t

1

c1

w1

c2

Version : October 24, 2016 Page 1 of 8



Algorithmic Game Theory, Summer 2016 Week 5

Longest Path (No mechanism!)

c1

c2
s t

1

c1

w1

c2

Two Jobs Problem: Maybe...

10

20
s t

1
2

c1

w1

c2

3

1

2

monotone

Truthful ⇔ Monotone Algorithm

Our new mechanism design technique will achieve the result above for a certain class of
problems, and for a formal definition of ‘monotone algorithm’.

2 One-Parameter Problems (formal setting)

We consider the following setting.

One-parameter problems

• Every player i has a private type

ti (single value) ;

• Solution a ∈ A costs to player i an amount equal to

wi(a) · ti

where wi(a) is the work that a allocates to i. The work is public knowl-
edge. That is, the mechanism knows wi(a) for each a ∈ A and each i.

Example 1. In the shortest-path problem, wi(a) is either 1 or 0 (the edge is selected or
not-selected). In the jobs allocation problem above, wi(a) is the sum of all jobs weights
that allocation a puts on machine i.

Version : October 24, 2016 Page 2 of 8



Algorithmic Game Theory, Summer 2016 Week 5

Definition 2 (monotone algorithm). We say that A is monotone, for a given
one-parameter problem, if for all i, for all c−i

wi(A(ci, c−i))

is monotone non-increasing in ci.

Our main result is the following.

Theorem 3 (Myerson Lemma1). For every one-parameter problem, it holds that

1. A monotone ⇒ (A,P ) truthful (for suitable P ) .

2. A not monotone ⇒ (A,P ) not truthful (no matter P ) .

Proof of Part 2. Suppose A is not monotone:

ci

wi

c′i c′′i

w′′
i

w′
i

where in the y-axis we have wi = wi(A(ci, c−i)) for some c−i. The rest of the proof uses
the same arguments of the longest path problem in the previous lecture. (Exercise!)

Proof of Part 1. Suppose A is monotone. The following payments will do the job:

ci

wi

in formulas

Pi(ci, c−i) = ci · wi(A(ci, c−i)) +

∫ ∞
ci

wi(A(u, c−i))du (1)

When player i is truth-telling, the utility is as follows:

ci

wi

ti

cost for i utility for i

1This is a slightly simpler version of the original result, and it is presented with the scheduling
terminology by Archer and Tardos.

Version : October 24, 2016 Page 3 of 8



Algorithmic Game Theory, Summer 2016 Week 5

If i reports a higher cost, ci > ti, then the utility is as follows:

ci

wi

ti

cost for i utility for i

ci

or in formulas

Pi(ci, c−i)− ti · wi(A(ci, c−i)) =(ci − ti)wi(A(ci, c−i)) +

∫ ∞
ci

wi(A(u, c−i))du

≤
∫ ci

ti

wi(A(u, c−i))du+

∫ ∞
ci

wi(A(u, c−i))du︸ ︷︷ ︸
utility when truth telling

If i reports a higher cost, ci > ti, then the utility is as follows:

ci

wi

ti

cost for i

ci

not covered

A

B
utility = A−B

which is at most the utility when truth telling (the A area).

Remark 1 (payments). In the definition of the payments (1), we need that the integral
is finite. This is true if, for example, when ci becomes sufficiently large, the algorithm
does not put any work on this player. This may not be always the case (consider the
shortest-path problem where removing edge i disconnects s from t). In such cases, the
following generalization of (1) can be used to guarantee truthfulness:

Pi(ci, c−i) = Qi(c−i) + ci · wi(A(ci, c−i))−
∫ ci

0

wi(A(u, c−i))du (2)

where Qi() is an arbitrary function independent of ci.

Remark 2 (voluntary participation). The above analysis shows that when a player is
truth-telling, the mechanism with payments (1) guarantees a nonnegative utility.
This condition is usually called voluntary participation.

2.1 Selfish Related Machines

We now consider the following one-parameter problem. We have k jobs of size J1, J2, . . . , Jk
and a set of n machines (players). Each machine i has a type ti and an allocation a of
jobs to machines specifies the amount of work wi(a) which is allocated to machine i (the
sum of all jobs weights that a puts on machine i). The parameter ti is the cost (time)
required by machine i to process one unit of work, and therefore the cost of player i for
allocation a is wi(a) · ti.

Version : October 24, 2016 Page 4 of 8



Algorithmic Game Theory, Summer 2016 Week 5

Goal: Minimize maximum cost or makespan

We want an allocation minimizing the makespan or maximum cost:

makespan(a, t) := max
i
ti · wi(a)

Since players can misreport their types, we want a truthful mechanism. All we need to
do is to design a monotone algorithm which minimizes the makespan.

Example 4. Suppose we have jobs of size 100, 2, 1 to be allocated on three machines.
Consider an algorithm which allocates these jobs as follows in these types:

types 1 2 10
allocation 100 1 2

types 1 10 10
allocation 100 2 1

In both cases the algorithm has an optimal makespan, but it is not monotone.

The previous example suggests that we have to consider some kind of optimal algo-
rithms.

Theorem 5 (Archer-Tardos). There exists a monotone algorithm minimizing the makespan
on related machines, and therefore an exact truthful mechanism for the problem of schedul-
ing selfish related machines.

Proof. Consider the set of all allocations, sorted in some order

A = {a1, a2, . . . , aN}

The algorithm returns the first (lexicographically minimal) allocation among those min-
imizing the makespan with respect to the input costs c1, . . . , cn. That is, the minimum s
such that

makespan(as, c) ≤ makespan(ah, c)

for all h. We argue that this algorithm A must be monotone (Exercise!).

3 Multi-Parameter Problems (unrelated machines)

In this section we consider a natural extension of the above problem called unrelated
machine scheduling.

1

1 2

t11

t21

t22t12

Jobs

Machines

2

Version : October 24, 2016 Page 5 of 8



Algorithmic Game Theory, Summer 2016 Week 5

Here the time to process job j on machine i is some number tji and there is no particular

relation between tji and say tj
′

i . The type of a machine is a (private) vector

ti = (t1i , t
2
i , . . . , t

k
i ).

Each player i can report any cost vector ci = (c1i , . . . , c
k
i ), that is, a different cost for each

job. For any job allocation a, the cost for player i is the total time required by machine
i to process the jobs it gets:

ti(a) :=
k∑

j=1

tji · a
j
i

where

aji =

{
1 if a allocates j to machine i

0 otherwise

The makespan or max players’ cost with respect to t = (t1, . . . , tn) is

makespan(a, t) = max
i
ti(a) = max

i

∑
j

tji · a
j
i .

Theorem 6 (Nisan-Ronen). There is no exact truthful mechanism for scheduling selfish
unrelated machines.

Proof. By contradiction, suppose (A,P ) is a truthful mechanism and A minimizes the
makespan. Consider this instance with 4 jobs and 2 machines in which all tji ’s are equal
to 1. The optimum makespan algorithm must allocate two jobs per machine, say like in
this picture:

1

1 2

Jobs

Machines

2 3 4

= optimal allocation

Now change the cost of player 1 as follows. The previously allocated jobs cost ε and the
non-allocated cost 1 + ε, for tiny ε > 0:

1

1 2

Jobs

Machines

2 3 4

= optimal allocation
ε ε

1 +
ε1 +

ε

We show that truthfulness cannot be achieved by considering c1 = (1, 1, 1, 1) and c′1 =
(ε, ε, 1 + ε, 1 + ε). Truthfulness requires to consider the two cases for player 1:

1. c1 is the true cost and player 1 reports c′1:

P1(c1, c2)− 2 ≥ P1(c
′
1, c2)− 3

Version : October 24, 2016 Page 6 of 8



Algorithmic Game Theory, Summer 2016 Week 5

2. c′1 is the true cost and player 1 reports c1:

P1(c
′
1, c2)− (1 + 3ε) ≥ P1(c1, c2)− 2ε

By summing up these inequalities we get a contradiction −3− 3ε ≥ −3− 2ε.

Remark 3. Note that the above negative result does not require any computational as-
sumption (that is, it also holds if we consider exponential-time algorithms).

It is natural to ask if one can have approximation truthful mechanisms for this
problem. That is, a truthful mechanism (A,P ) such that the algorithm guarantees

makespan(A(c), c)

optmakespan(c)
≤ α

where optmakespan(c) := mina∈Amakespan(a, c), for some constant α.

Remark 4. For n unrelated machines, the VCG mechanism is an n-approximation truth-
ful mechanism. (Exercise!)

By looking at the proof of Theorem 6, it is possible to show that for 2 machines, a
2-approximation is the best possible.

Corollary 7. Even for two unrelated machines, there is no α-approximation truthful
mechanism with α < 2.

Proof. Consider a larger number of jobs, and use the same arguments of the proof to con-
clude that if we modify the optimal allocation in one of the two cases, the approximation
ratio will necessarily be worse that 2− δ. (Exercise!)

4 Main Points of This Lecture

We have now two techniques to construct truthful mechanisms:

1. VCG mechanisms which minimize the sum of players’ costs (previous lecture);

2. In one-parameter setting, construct a monotone algorithm (this lecture);

We have also seen techniques to prove impossibility results:

1. An algorithm cannot be transformed into a truthful mechanism (monotonicity);

2. No mechanism at all (makespan minimization in unrelated machine scheduling).

These negative results are proved in essentially the same way (see also longest path
problem in previous lecture).

Finally, the results on scheduling problems suggest that multi-parameter problems
are more difficult than one-parameter ones (i.e., related vs unrelated machines).

Version : October 24, 2016 Page 7 of 8



Algorithmic Game Theory, Summer 2016 Week 5

Recommended Literature

For the monotonicity in one-parameter problems:

• R. Myerson, Optimal Mechnism Design, Mathematics of Operations Research, 6:58–
73, 1981. (Original characterization of truthful mechanisms for one-parameter set-
tings)

• A. Archer and É. Tardos, Truthful Mechanisms for One-Parameter Agents. FOCS
2001. (Characterization of truthful mechanisms, which is deemed more accessible
to computer scientists, including the results on scheduling related machines)

The unrelated machines problem is studied in:

• N. Nisan and A. Ronen, Algorithmic mechanism design. STOC 1999. (First inap-
proximability results, presented in this lecture. This is the first paper on algorithmic
mechanism design.)

• A. Mu’alem and M. Schapira, Setting lower bounds on truthfulness. SODA 2007.
(Improved lower bounds, also for several other problems in both one-parameter and
multi-parameter versions)

• I. Gamzu, Improved lower bounds for non-utilitarian truthfulness. Theoretical
Computer Science 412.7 (2011): 626-632. (Inapproximability of three unrelated
machines, and other problems)

• I. Ashlagi, S. Dobzinski, R. Lavi, Optimal Lower Bounds for Anonymous Scheduling
Mechanisms. Mathematics of Operations Research 37.2 (2012): 244-258. (Strong
inapproximability results for a very ‘natural’ class of mechanisms)

Version : October 24, 2016 Page 8 of 8


	A simple problem (warm up)
	Intuition (monotonicity)

	One-Parameter Problems (formal setting)
	Selfish Related Machines

	Multi-Parameter Problems (unrelated machines)
	Main Points of This Lecture

