
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Department Informatik 6. November 2017
Markus Püschel David Steurer Peter Widmayer
Chih-Hung Liu
Stefano Leucci

Datenstrukturen & Algorithmen Blatt P7 HS 17

Hand-in: Bis Sonntag, 19. November 2017, 23:59 Uhr via Online Judge (nur Source Code).
Fragen zur Aufgabenstellung oder Übersetzung werden wie üblich im Forum beantwortet.

Exercise P7.1 Inversions.

Consider an array A = 〈a0, a1, . . . , an−1〉 containing n distinct integers between 0 and 50000.
An inversion is a pair of indices i, j with 0 ≤ i < j < n such that ai > aj . Your task is to design
an algorithm that, given A, computes the total number of inversions in A.

Input The input consists of a set of instances, or test-cases, of the previous problem. The
first line of the input contains the number C of test-cases, and each test case consists of 2 lines.
The first line of each test-case contains the integer n. The second line of the test-case contains
the n integers a0, . . . , an−1 in A, separated by a space.

Output The output consists of C lines, each containing a single integer. The i-th line is the
answer to the i-th test-case, i.e., it contains the number of inversions in the corresponding input
array A.

Grading You get 3 bonus points if your program works for all inputs. Your algorithm should
have an asymptotic time complexity of O(n log n) with reasonable hidden constants. Submit your
Main.java at https://judge.inf.ethz.ch/team/websubmit.php?cid=18997&problem=DA17P4.3. The
enrollment password is “asymptotic”.

Example

Input:

2

5

4 6 12 8 20

7

2 12 8 43 1 7 3

Output:

1

12

Notes For this exercise we provide an archive on the lecture website containing a program
template that will load the input and write the output for you. The archive also contains
additional test cases (which differ from the ones used for grading). Importing any additional
Java class is not allowed (with the exception of the already imported java.util.Scanner

class).

https://judge.inf.ethz.ch/team/websubmit.php?cid=18997&problem=DA17P4.3

Exercise P7.2 Mountain Trip.

A road is n kilometers long and passes through several cities. Each city can be either a mountain
city or a sea city. There are M mountain cities, the i-th of which is located mi kilometers after
the beginning of the road. Similarly, there are S sea cities and the i-th sea city is located si
kilometers after the beginning of the road (mi and si are integers between 0 and n, endpoints
included, and each kilometer of the road can traverse at most one city).

A travel agency offers T possible trips. The i-th trip starts from kilometer bi and ends at
kilometer ei of the road, visiting all the cities in-between (endpoints included). Alice wants to
buy a trip that visits the largest number of mountain cities and that does not visit any sea city.

Your task is to design an algorithm that finds the best trip for Alice.

Input The input consists of a set of instances, or test-cases, of the previous problem. The
first line of the input contains the number C of test-cases, and each test-case consists of 5 lines.
The first line of each test-case contains the four integers n, M , S, and T . The second line
contains M integers, where the i-th integer is the position mi of the i-th mountain city. The
third line contains S integers, where the i-th integer is the position si of the i-th sea city. The
fourth line contains T integers, where the i-th integer is the number bi. Finally, the fifth line
also contains T integers, where the i-th integer is the number ei.

Output The output consists of C lines, where the i-th line is the answer to the i-th test-case
and contains the index of the best trip, i.e., an integer t such that 1 ≤ t ≤ T and:

(1) there exists no j such that bt ≤ sj ≤ et;

(2) for every index r 6= t that satisfies condition (1), |{j : br ≤ mj ≤ er}|< |{j : bt ≤ mj ≤ et}|.

You can assume that such an index t always exists.

Grading You get 3 bonus points if your program works for all inputs. Your algorithm should
require O ((M + S + T) log(M + S)) time (with reasonable hidden constants). Submit your
Main.java at https://judge.inf.ethz.ch/team/websubmit.php?cid=18997&problem=DA17P4.4. The
enrollment password is “asymptotic”.

Example

0 1 2Km 3 4 5 6 7 8 9 10 11

trip 1

trip 4

trip 2

12

trip 5

trip 3

Input (corresponding to the instance in the previous picture):

1

12 7 3 5

10 8 5 3 9 1 12

6 2 11

1 5 8 3 7

3 7 11 5 8

2

https://judge.inf.ethz.ch/team/websubmit.php?cid=18997&problem=DA17P4.4

Output:

4

Notes For this exercise we provide an archive on the lecture website containing a program
template that will load the input and write the output for you. The archive also contains
additional test cases (which differ from the ones used for grading). Importing any additional
Java class is not allowed (with the exception of the already imported java.util.Scanner

class).

3

