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—— Abstract

Hash tables are a ubiquitous class of dictionary data structures. However, standard hash table
implementations do not translate well into the external memory model, because they do not
incorporate locality for insertions.

Tacono and Pitragu established an update/query tradeoff curve for external-hash tables: a
hash table that performs insertions in O(\/B) amortized IOs requires Q(logy N) expected 10s
for queries, where N is the number of items that can be stored in the data structure, B is the
size of a memory transfer, M is the size of memory, and A is a tuning parameter. They provide
a complicated hashing data structure, which we call the IP hash table, that meets this curve
for A that is Q(loglog M + log,; N).

In this paper, we present a simpler external-memory hash table, the Bundle of Arrays
Hash Table (BOA), that is optimal for a narrower range of A\. The simplicity of BOAs allows
them to be readily modified to achieve the following results:

A new external-memory data structure, the Bundle of Trees Hash Table (BOT), that
matches the performance of the IP hash table, while retaining some of the simplicity of the

BOAs.

The Cache-Oblivious Bundle of Trees Hash Table (COBOT), the first cache-oblivious
hash table. This data structure matches the optimality of BOTs and IP hash tables over the
same range of \.
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Optimal Hashing in External Memory

1 Introduction

Dictionaries are among the most heavily used data structures. A dictionary maintains a
collection of key-value pairs S C U x V, under operations' INSERT(z,v,S), DELETE(x, S),
and QUERY(z,S), which returns the value corresponding to x when z € S. When data fits in
memory, there are many solutions to the dictionary problem.

When data is too large to fit in memory, comparison-based dictionaries can be quite
varied. They include the Bé-tree [8], the write-optimized skip list [6], and the cache-optimized
look-ahead array (COLA) [2,3,5]. These are optimal in the external-memory comparison
model in that they match the bound established by Brodal and Fagerberg [8] who showed

that for any dictionary in this model, if insertions can be performed in O W%N

) amortized
I0s, then there exists a query that requires at least Q(logy N) I0s, where N is the number
of items that can be stored in the data structure, B is the size of a memory transfer, and
A is a tuning parameter. In the following M will be the size of memory, and B = Q(logn).
This trade off has since been extended in several ways [1,4].

Tacono and Patragcu showed that in the DAM model, in which operations beyond

comparisons are allowed on keys, that a better tradeoff exists:

» Theorem 1 ( [11]). If insertions into an external memory dictionary can be performed in
O (\/B) amortized 10s, then queries require an expected Q(logy, N) I0s.

They further describe an external-memory hashing algorithm, which we refer to here as
the IP hash table, that performs insertions in O (% ()\ + log% N + loglog N)) 10s and

queries in O(logy N) I0s w.h.p. Therefore, for A = Q <logM/B N +loglog N), the TP hash
table meets the tradeoff curve of Theorem 1 and is thus optimal.

In dictionaries that do not support successors and predecessors, we can assume that
keys are hashed, that is, that they are uniformly distributed and satisfy some independence
properties. The IP hash table and the following results hash all keys before insertion and
query in the dictionary by a ©(log N)-independent hash function.

The base result of this paper is a simple external-memory hashing scheme, the Bundle
of Arrays Hash Table (BOA), that meets the optimal Theorem 1 trade off curve for large
enough \. Specifically, we show:

» Theorem 2. A BOA supports N insertions and deletions with amortized per entry cost of
0] (()\ + log% N + log, N) /B) 10s, for any X > 1. A query for a key K costs O(D log, N)
10s w.h.p., where Dy is the number of times K has been inserted or deleted.

Thus BOAs are optimal for \ = Q(log% N + log, N). They are readily modified to
provide several variations, notably the Bundle of Trees Hash Table (BOT). BOTs are
optimal for the same range of A\ as the IP hash table:

» Theorem 3. A BOT supports N insertions and deletions with amortized per entry
cost of O (()\—I—log% N—|—loglogM) /B) 10s for any A > 1. A query for a key K costs
O(Dg logy N) IOs w.h.p., where Dy is the number of times K has been inserted or deleted.

1 We do not consider dictionaries that also support the succ(z,S) and PRED(z,S). succ(z,S) return
min{yly > z Ay € S} and PRED(z, S) is defined symmetrically.
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We further introduce the first cache-oblivious hash table, the Cache-Oblivious Bundle
of Trees Hash Table (COBOT), which matches the IO performance of BOTs and IP hash
tables.

The BOT can also be adapted to models in which disk reads and writes incur different
costs. The S-asymmetric BOT adjusts the merging schedule of a regular BOT to trade some
writes for more reads. We leave the details for the full version [?].

» Theorem 4. A S-asymmetric BOT supports N insertions and deletions with amortized
per entry cost of O (% ()\ + %log)\ N)) writes and O (% A+ [3)) reads for any A > 1 and

B < {logA %J, A query for a key K performs O(Dg logy N) reads, where Dy is the

number of times K has been inserted or deleted.

2 Preliminaries

Fingerprints and Hashing. In order to achieve our bounds, we need ©(log N)-wise inde-
pendent hash functions, which, once again matches IP hash tables. We note that a k-wise
independent hash function is also k-wise independent on individual bits. Furthermore, the
following Chernoff-type bound holds:

» Lemma 5 ( [14]). Let X1,Xo,...,Xn be [ud]-wise independent binary random variables,
X = Zf\il X; and p=E[X]. Then P(X > pé) = O (1/6"°), for sufficiently large 5.

In the following, we use fingerprint to refer to any key that has been hashed using a
O (log N)-wise independent hash function. Such hash functions have a compact representation
and can be specified using ©(log N) words. The universe that is hashed into is assumed to
have size ©(N¥) for k > 2. We ignore collisions, but these can be handled as in [12].

For a fingerprint K, it will be convenient to interpret the bits of K as a string of log A
(where lambda is a given parameter) bit characters, K = KoK Ks---.

Delta Encoding. We will frequently encounter sorted lists of fingerprint prefixes (possibly
with duplicates), together with some data about each. When the size of the list is dense
in the space of prefixes, we can compress it using delta encoding, where the difference
between prefixes is stored rather than the prefixes themselves.

» Lemma 6. A list of delta-encoded prefizes with density D, that is there are D prefixes in
the list for every possible prefiz, requires O(—logy D) characters per prefix.

Proof. The average difference between consecutive prefixes is 1/D. Because logarithms are
convex, the average number of characters required to represent this difference is therefore
O(—logy D). <

Log-structured Merge Trees. Log-structured merge trees (LSMs) are (a family of) external-
memory dictionary data structures. They come in two varieties: level-tiered LSMs
(LT-LSMs) and size-tiered LSMs (ST-LSMs). Both kinds are suboptimal in that they
do not meet the optimal insertion-query tradeoff [8], although the COLA [3] is an optimal
variant of the LT-LSMs.

An LSM consists of sets of either B-trees or sorted arrays called runs. In this paper, we
describe them in terms of runs, since we use runs below.

An LT-LSM consists of a cascade of levels, where each level consists of at most one run.
Each level has a capacity that is A\ times greater than the level below it, where A is called
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the growth factor.? When a level reaches capacity, it is merged into the next level (perhaps
causing a merge cascade). The amortized IO cost for insertions is small because sequential
merging is fast, although each item will participate in \/2 merges on average. The 10 cost
for a query is high because a query must be performed independently on each of O(log, N)
levels (although Bloom filters [5,7] are sometimes used to mitigate this cost).

An ST-LSM further improves insertion IOs at the expense of queries. Each level contains
fewer than A runs. Every run on a given level has the same size, which is A times larger than
the runs on the level beneath it. When A runs are present at a level, they are merged into
one run and placed at the next level. There are therefore O(logy, N) levels. Insertions are
faster than in LT-LSMs because each item is only merged once on each level. Queries are
slower because each query must be perform O()) times at each level.

In LSMs, deletions can be implemented by the use of upsert messages [9,13], which
are a type of insertion with a message that indicates that the key has been deleted. A query
for a key K then fetches all the matching key-value pairs and if the last one (temporally) is
a deletion upsert, it returns false. To this end, the merges must maintain the temporal order
of key-value pairs with the same key. Because a query for a key K must fetch every instance
of K, the cost of a query is proportional to the number of times the key has been inserted
and deleted, which we refer to as the duplication count, Dy of K. When N/2 deletions
have been made, the structure is rebuilt to reclaim space. In what follows, deletions will be
implemented using the same mechanism.

3 Bundle of Arrays Hashing

A Bundle of Arrays Hash Table (BOA) is an external-memory dictionary based on
ST-LSMs. In this section, we describe a simple version which is optimal in the sense of
Theorem 1, but where the query cost meets the bound only in expectation, not w.h.p. In
Section 4, we give a version that satifies Theorem 2.

As a first step, we show that runs with uniformly distributed, ©(log N)-wise independent
fingerprints can be searched more quickly than in an ST-LSMs. In this section

» Lemma 7. Let A be a sorted array of N uniformly distributed ©(log N)-wise independent
keys in the range [0, K), and assume B = Q(log N). Then A can be written to external
memory using O(N) space and O(N/B) IOs so that membership in A can be determined in
O(1) 10s with high probability.

Proof. First note that, by Lemma 5 and Bonferroni’s inequality, if N balls are thrown into
©(N/log N) bins uniformly and ©(log N)-wise independently, then every bin has O (log N)
balls with high probability.

Divide the range of keys into N/B uniformly sized buckets; that is, bucket ¢ contains
keys in the range [(i — 1)K B/N,iK B/N). Because the keys in A are distributed uniformly,
and B = Q(log N), every bucket contains ©(B) keys with high probability. Let F' be the
number of items in the fullest bucket, and write the keys in each bucket to disk in order
using F' space for each. Because F' = ©(B), this takes the desired space and 10s.

Now, to find a key, compute which bucket it belongs to. A constant number of I0s will
fetch that bucket, whose address is known because all buckets have the same size. <

2 Sometimes this and related structures are analyzed with a growth factor of B¢. The two are equivalent.
We use A rather than € as the tuning parameter for consistency with the external-memory hashing
literature.
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» Corollary 8. If an ST-LSM contains uniformly distributed and ©(log N)-wise inde-
pendent fingerprints and has growth factor X\, then a query for K can be performed in
O(DgAlogy N) I0s by writing the levels as in Lemma 7. The insertion/deletion cost is

unchanged: O (% (log)\ N + log% N)) amortized 10s.

While the query performance improves by a factor of log IV, the ST-LSM is still off the
optimal tradeoff curve of Theorem 1. In particular, queries can be at least exponentially
slower than optimal. The BOA use additional structure in order to reduce this query cost.

3.1 Routing Filters

The main result of this section is an auxiliary data structure, the routing filter, that
improves the query cost of an ST-LSM by a factor of A by further exploiting the log-wise
independence of fingerprints. Combining these routing filters with fast interpolation search
will yield the BOA, a hashing data structure that is optimal for large enough .

The purpose of the routing filter is to indicate probabilistically, at each level, which run
contains the fingerprint we are looking for. Each level will have its own routing filter, defined
as follows. For each level ¢, let hy be some number, to be specified below. Let Py(K) be
the prefix consisting of the first h, characters of K. The routing filter F} for level ¢ is a
Ahe_character array, where Fy[i] = j if the jth run Ry ; contains a fingerprint K such that
the P;(K) =1, and no later run Ry ;- (i.e. with j/ > j) contains such a fingerprint.

We also modify each run R, ; during the merge so that each fingerprint-value pair contains
a previous field of 1 additional character used to specify the previous run containing a
fingerprint with the same prefix, or j to indicate no such run exists. Thus these fingerprint-
value pairs now form a singly linked list whose fingerprint share the same prefix, and the
routing filter points to the run containing the head.

During a query for a fingerprint K, first Fy[P;(K)] is checked to find the latest run
containing a fingerprint with a matching prefix. Once that fingerprint-value pair is found, its
previous field indicates the next run which needs to be checked and so on until all fingerprints
with matching prefix in the level are found. Each fingerprint K’ # K that matches K’s
prefix is a false positive.

Such routing filters induce a space/cost tradeoff. The greater hy is, the more space the
table takes but the less likely it is that many runs will have false positives. The rest of this
section shows that when hy = log, B + ¢, in other words, when prefixes grow by a character
per level, the BOA lies on the optimal tradeoff curve of Theorem 1.

Define 3, the routing table ratio, to be the ratio of the number of buckets in the
routing filter to the size of a run. The number of entries in a run on level ¢ is BA*~!, so
B = A" /BX~1. We first analyze the per-level insertion/deletion cost, and then we compute
the expected number of false positives in order to analyze the overall query cost.

» Lemma 9. For a BOA with growth factor A and routing table ratio 5, merging a level
incurs © (é (1 + log% A+ Blogy A)) 10s per fingerprint.

Proof. Merging a level requires merging its runs as well as updating the next level’s routing
filter. Merging A sorted arrays takes © (% (1 +logar/ )\)) 1Os per fingerprint.

The routing filter is updated by iterating through it and the new run sequentially. For
each fingerprint K appearing in the run, Fy [Py, , (K)] is copied to the previous field in the
run, and Fyy1[Py,, , (K)] is set to the number of the current run. Each entry in the routing
filter is a character, and the routing filter has § entries for each new fingerprint. Thus, it

requires © (% log /\> IOs per fingerprint to update sequentially. |
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» Lemma 10. For a BOA with growth factor A and routing table ratio B, querying a
fingerprint K on a given level incurs at most % false positives in expectation.

Proof. Given some enumeration of the fingerprints in level ¢, which are not equal to K,
denote the ith such fingerprint by K;. Some of these may be the duplicates. Let X; be
the indicator random variable, which is 1 if Pp(K) = P;(K;) and 0 otherwise. K and K;
are uniformly distributed and their bits are pairwise independent. Thus E [X;] < <&. The

e
expected number of fingerprints (excluding K) in the level with prefix Pp(K) is thus at most
B ¢
> i BIXi] < ?’i\z = % <

» Lemma 11. A BOA with growth factor A and routing table ratio 8 has insertion/dele-
tion cost O (% (ﬁ—klog% N +log, N)) A query for fingerprint K has expected cost

0] (%DK log N), where Dy s the duplication count of K.

Proof. Because a BOA has log, N levels, the insertion cost follows from Lemma 9.
To query for a fingerprint K, the routing filter on each level is checked, which incurs
O(logy N) I0s. These routing filters return a collection of runs which contain up to Dg true

positives and an expected O (% log, N ) false positives, by Lemma 10. By Lemma 7, each
run can be checked in O(1) IOs. |

So for a fixed A, there is no advantage to choosing 8 = w(\). On the other hand, 5 = o(\)
is suboptimal, because then choosing 5’ = M = 3 changes a linear factor in the query cost to

a logarithmic one. Therefore, it is optimal to choose 8 = O(A), and in what follows we will
fix = A. Thus,

» Lemma 12. A BOA supports N insertions and deletions with amortized per entry cost of
0] (()\ +loga N + logy N) /B) 10s, for any A > 1. A query for a key K costs O(Dg logy N)
10s in expectation, where Dk is the duplication count of K.

4 Refined Bundle of Arrays Hashing

In order to obtain high probability bounds for a BOA, we need a stronger guarantee on
the number of false positives. This is achieved by including an additional character, the
check character from each fingerprint in the routing filter, which is also checked during
queries and thus eliminates most false positives. To support this, we will need to refine the
routing filter so it can maintain check characters even when there are collisions.

The ith check character C;(K) of a fingerprint K is the ith character from the end of the
string representation of K. As described in Section 2, we assume that the fingerprints are
taken from a universe of size at least N2 so that the check characters do not overlap with
the characters used in the prefixes of the routing filters, and by ©(log N)-wise independence,
the check characters of O(1) fingerprints are independent. Now each fingerprint in the filter
has a check character and a array pointer, and we refer to this data as the sketch of the
fingerprint.

When level i of the BOA is queried for a fingerprint K, the refined routing filter (described
below) returns a list of sketches, one for each fingerprint in the level with prefix P;(K). The
array indicated in the sketch is only checked if the check character matches C;(K), which
reduces the number of false positives by a factor of .

Refined Routing Filter. The routing filter described in Section 3.1 handles prefix collisions
by returning only the last run containing the queried fingerprint and then chaining in the
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runs. Whereas, to support check characters, we need to return a list instead, while having
the same performance guarantees.

The idea behind the refined routing filter is to keep the prefix-sketch pairs in a sorted list
and use a hash table on prefixes to point queries to the appropriate place. Each pointer may
require as many as 2(log N) bits, and we require the routing filter to have O(1) characters
per fingerprint. Therefore the hash table must use shorter prefixes so as to reduce the number
of buckets and thus reduce its footprint. In particular, it uses prefixes which are log, logy, N
characters shorter, which we refer to as pivot prefixes.

The list delta encodes the prefix for each fingerprint K, together with its sketch. In

addition, the first entry following each pivot prefix contains the full prefix, rather then just
the difference. Otherwise, when the hash table routes a query to that place in the list, the
full prefix wouldn’t be immediately computable.
Alog A
Blog N
and performs lookups in O(D%;) I0s w.h.p., where D% is the number of times K appears in
the level.

» Lemma 13. A refined routing filter can be updated using O ( ) 10s per new entry,

Proof. We prove first the update bound and then the query bound.

Let C be the capacity of the level. There are at most ﬁ pivot prefixes. For each pivot
prefix, the hash table stores the bit position in a list with at most C entries, where C' < N.
Each entry is at most log IV bits, so this position can be written using O(log N) bits.

For each fingerprint in the node, the list contains O(1) characters by Lemma 6, or O(log A)
bits. Additionally, each pivot prefix has to an initial entry of length O(log V) bits, so the list
all together uses O(C'log A + ﬁ -log N) = O(C'log \) bits.

When the refined routing filter is updated, the old version is read sequentially and the
new version is written out sequentially. C/A fingerprints are added at a time, so this incurs

o ( Alog A ) IOs per entry.

Blog N
During a query, the pivot bit string of a fingerprint and its successor are accessed from

the hash table in O(1) IOs. This returns the beginning and ending bit positions in the list.

Because the fingerprints are distributed uniformly and are pairwise independent to K, there
are O(logy N + Dj,) fingerprints matching the pivot prefix in expectation. From Lemma 5
with ¢ = log A, there are O(log N + D}, ) fingerprints matching the pivot prefix w.h.p. The
encoding of each fingerprint is less than a word, and B = Q(log N) by assumption, so this is
O(D3,) 10s. |

BOA Performance. We now can show:

» Theorem 2. A BOA supports N insertions and deletions with amortized per entry cost of
(0] (()\ +1loga N + log, N) /B) 10s, for any X\ > 1. A query for a key K costs O(Dg logy N)
10s w.h.p., where Dy is the number of times K has been inserted or deleted.

Proof. The insertion/deletion cost is given by Lemma 13 and Theorem 12.
During a query for a fingerprint K, the expected number of false positives on level i

(fingerprints which match the prefix P;(K) and check character C;(K) but are not K) is

O (%) Thus, the number of false positives across levels is O (M), so by Lemma 5, the

number of false positives is O (log, N) w.h.p. <

Thus, a BOA is optimal for large enough A:

» Corollary 14. Let B be a BOA with growth factor A containing N entries. If A =

Q (log% N + log)i)JgVN> , then B is an optimal unsorted dictionary.
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Level 3 Keys added to Tree becomes
Level 2 root routing filter child of root

D908y e GooGobasy  Go0GoOaNe

Log Level 3 Level 2 Level 3

Figure 1 The routing trees in a 3 Figure 2 When the routing tree on level ¢ fills, it is
level BOT. The trees cover contiguous merged into the routing tree on level i+ 1. The now-full
portions of the log. The highest level routing tree from level ¢ + 1 becomes a child of the root
covers the beginning of the log, the next on level i 4+ 1. Its fingerprints are added to the root
level the beginning of the remainder of routing filter. Note that the tree is not moved.

the log, and so on.

5 Bundle of Trees Hashing

In order for a BOA to be an optimal dictionary, its growth factor A must be Q(log N/ loglog N).
Otherwise, the cost of insertion is dominated by the cost of merging, which in slow because
it effectively sorts the fingerprints using a A-ary merge sort. In this section, we present the
Bundle of Trees Hash Table (BOT), which is a BOA-like structure. A BOT stores the
fingerprints in a log in the order in which they arrive. Each level of the BOT is like a level of
a BOA, where the bundle of arrays on each level is replaced by an search structure on the
log (the routing tree) and a data structure needed to merge routing trees (the character
queue). The character queue performs a delayed sort on the characters needed at each level,
thus increasing the arity of the sort and decreasing the 10s.

A BOT has s = [logy N/B] levels, each of which contains a routing tree. The root of
the routing tree has degree less than A and all internal nodes have degree A. Each node of
a routing tree contains a routing filter. As in Section 4, each routing filter takes as input
a fingerprint K and outputs a list of sketches corresponding to fingerprints with the same
prefix as K. Each sketch consists of a pointer to a child, a check character and some auxiliary
information discussed below.

Each leaf points to a block of B fingerprints in the log. The deepest level s uses a
height-s tree to index the beginning of the fingerprint log, the next level then indexes the
next section and so forth, as shown in Figure 1. Insertions and deletions (as upsert messages)
are appended to the log until they form a block, at which point they are added to the tree in
the 1st level of the BOT.

When a level i in the BOT fills, its routing tree is merged into the routing tree of level
i + 1, thus increasing the degree of the target routing tree by 1 (and perhaps filling level
i+ 1, which triggers a merge of level i 4+ 1 into i + 2, and so on). The merge of level i into
level i + 1 consists of adding the prefix-sketch pairs of the fingerprints from level ¢ to the
routing filter of the root on level i + 1. The child pointers of these pairs will point to the
root of the formerly level-i routing tree, so it becomes a child of the root of the level ¢ + 1
routing tree, although it isn’t moved or copied. See Figure 2. In this way, a BOT resembles
an LT-LSM, described in Section 2.

In order to add a fingerprint K from level ¢ to the root routing filter on level ¢ + 1, the
prefix P;11(K) must be known. However, the root routing filter on level i only stores the
prefix P;(K) for each fingerprint K it contains, so that in particular the last character of
P, 11(K) is missing. As described in Section 5.2, each level has a character queue, which
provides this character, as well as the check characters, in order to merge the routing trees
efficiently.
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5.1 Queries in a BOT

A query to the BOT for a fingerprint K is performed independently at each level, beginning
at the root of each routing tree. When a node is queried, its routing filter returns a list of
sketches. The sketches whose check characters match the queried fingerprint indicate to
which children the query is passed. This process continues until the query reaches a block of
the log, which is then searched in full. In this way queries are “routed” down the tree on
each level to the part of log where the fingerprint and its associated value are. Note that as
queries descend the routing tree, they may generate false positives which are likewise routed
down towards the log.

In this section, we refine routing trees so that they offer two guarantees about false
positives. The first is that at each level, the probability that a given false positive is not
elinimated is at most % The second is that false positives can only be created in the root,
so that as the query descends the tree, the number of false positives cannot increase.

During a query to a node of height & for a fingerprint K, the routing filter returns a list
of sketches corresponding to fingerprints which match K’s prefix. The query only proceeds
on those children whose check characters also match the check character Cp,(K). Since the
characters of the fingerprint are uniformly distributed and ©(log N)-wise independent, the
check character of each false positive matches with probability % Moreover, the characters
of each level are non-overlapping, so for fingerprints K, K’ the event that V;(K) = V}(K')
is independent of the event that Vj,_1(K) = Vi1 (K').

To prevent new false positives from being generated when a query passes from a parent
to a child, the next character of each fingerprint is also kept in its sketch in the routing
filter. For a fingerprint K in a node of height h, the next character is just the next character
that follows the prefix, P, (K), so that its prefix in the parent, Pj,41(K), can be obtained. A
false positive in a child which is not in the parent will not match this next character and can
be eliminated.

When there are multiple prefix-matching fingerprints in both a parent and its child,
we would like to be able to align the lists returned by the routing filters so that known
false positives in the parent (either from check or next characters) can be eliminated in the

child. Otherwise the check character in the child of a known false positive in the parent may
1

match the queried fingerprint, and therefore more than § of the false positives may survive.

To this end, we require the routing filter to return the list of sketches in the order their
fingerprint-value pairs appear in the log. Then after the sketches in the child list whose next
characters do not match the parent are eliminated, the remaining phrases will be in the same
order as in the parent. In this way, known false positives can also be eliminated in the child.

Now we can show:

» Lemma 15. During a query to a routing tree, the following are true:
1. A false positive can only be generated in the root.

2. At each level, a given false positive survives with probability at most %

Proof. Because of the next characters, false positives may only be created in the root of

the routing tree. Each false positive in the root corresponds to a fingerprint K’ in the level.

At each node on the path to K’’s location in the log, we use the ordering to determine
which returned sketch corresponds to K’, so that the false positive corresponding to K’ is
eliminated with probability % <
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5.2 Character Queue

The purpose of the character queue is to store all the sketches of fingerprints contained in a
level i that will be needed during a merge in the future. When level ¢ is merged into level
i+ 1, the character queue outputs a sorted list of the delta-encoded prefix-sketch pairs of all
the fingerprints, which is used to update the root routing tree. The character queue is then
merged into the character queue on level 7 + 1.

The character queue effectively performs a merge sort on the sketches. If it were to
merge all the sketches as soon as they are available, this would consist of A-ary merges. In
order to increase the arity of the merges, it defers merging sketches which are not needed
immediately. The sketches are stored collection of series, by which we mean a collection of
sorted runs. Each series stores a continuous range of sketches S;(K), Si11(K), ..., Sit;(K)
for each fingerprint K, together with the prefix up to the first sketch, P;_; (K). These prefixes
are delta encoded in their run. Thus the size of an entry is determined by the number of
sketches in the range and the length of the prefix relative to the size of the run (by Lemma 6).

The character queue tradeoff. We are faced with the following tradeoff. If the character
queue merges a series frequently, the delta encoding is more efficient, which decreases the
cost of the merging. However the arity is lower, which increases it. The character queue uses
a merging schedule which balances this tradeoff and thus achieves optimal insertions.

The character queue merging schedule. The character queue on level i (here we consider
blocks of the log to be level 0) contains the sketches S;11(K), S;12(K),...Ss(K) of each
fingerprint K in the level. These characters are stored in a collection of series {o}, },
where j, is the smallest multiple of 27 greater than i. Series o;, contains the sketches
S5y (K. Syt
stores the delta encoded prefix of each fingerprint together with its sketches.

(K). Each series consists of a collection of sorted runs each of which

Initially, when a block of the log is written, all the series o9q for ¢ = 1,2,3, ... are created.
When level 1 fills, the runs in the series 0,41 are merged, and the character queue outputs the
delta encoded prefix-sketch pairs, (P;11(K), S;+1(K)) to update the root routing filter on
level i+ 1. If 2°(+9) is the greatest power of 2 dividing i+ 1 (p is sometimes referred to as the
ruler function [15]), then o, also contains the next 2°(+1) —1 sketches of each fingerprint.
These are batched and delta encoded to become runs in the series o;, for ¢ = [0, p(i 4 1)].
The runs in the remaining series of level i becomes runs of their respective series on level
1+ 1.

Note that for the lower levels, some runs in may be shorter than B due to the delta
encoding. For a run in a series oy, this is handled by buffering them with the runs o, of higher
levels and writing them out once they are of size B. Note that this requires O(B loglog N)
memory.

This leads to the following merging pattern: o; batches 2°(J) sketches, and has delta
encoded prefixes of 2°(9) characters on average, by Lemma 6. Therefore,

» Lemma 16. A series o; in a character queue contains O(QP(j)) characters per fingerprint.

This leads to a merging schedule where the characters per item merged on the jth level
is 0(2°1)). Starting from 1 this is 1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16, ..., which resemble
the tick marks of a ruler, hence the name ruler function.

We now analyze the cost of maintaining the character queues.

» Lemma 17. The total per-insertion/deletion cost to update the character queuves in a BOT
is © (% (logM N+loglogM)).
B
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Proof. When o; is merged, X2"G) runs are merged, which has a cost of
0] (2';# {logM/B ()\QP(j))—‘) characters per fingerprint.

There are log) % = O(logy N) levels, so this leads to the following total cost in terms of

characters:
logy N loglog, N 10g N
j 2°(j _ A k 2k
(0] Z 2r(7) [log% ()\ (J))—‘ =0 Z 7.2 [Iog% ()\ )—‘
i=1 k=0
loglog, N
=0 | log, N [ loglog M + Z leog% A

k=loglog M

-0 (log/\N (loglogM—Hog% N)) ;

where the last equality is because the RHS sum is dominated by its last term. Because there
are log, N characters in a word, and all reads and writes are performed sequentially in runs
of size at lease B, the result follows. |

5.3 Performance of the BOT

We can now prove Theorem 3:

» Theorem 3. A BOT supports N insertions and deletions with amortized per entry
cost of O ((/\—Hog% N—|—loglogM> /B) 10s for any A > 1. A query for a key K costs
O(Dglogy N) I0s w.h.p., where Dy is the number of times K has been inserted or deleted.

Proof. By Lemma 13, the cost of updating the routing filters is O (%), since there are
O(logy N) levels. This, together with the cost of updating the character queues, given by
Lemma 17, is the insertion cost.

By Lemma 15, a query for fingerprint K on level ¢ incurs O (%) false positives in the
root, and O(1) nodes are accessed along each of their root-to-leaf paths. By Lemma 13, each
false positive thus incurs O(Dg) IOs.

logy, N
A

There are an expected O ( ) false positives across all levels, so, using Lemma 5

with § = A, O(Dg logy N) nodes are accessed due to false positives w.h.p. For each time K
appears in the BOT, O(log, N) nodes are accessed on its root-to-leaf path. By Lemma 13
the node accesses along each path incur O(D log,) I0s w.h.p., so accessing the nodes incurs
O(logy N) I0s w.h.p.

A block of the log is scanned at most Dg times for true positives and also whenever
a false positive from the level-i root survives i times. The expected number of such false
positives for level i is 1/\%, so the expected number across levels is O (%) Therefore by
Lemma 5, the number of blocks scanned is O(Dg logy, N) w.h.p. <

» Corollary 18. Let B be a BOT with growth factor X\ containing N entries. If A =
Q (log% N + loglog M), then B is an optimal dictionary.

6 Cache-Oblivious BOTs

In this section, we show how to modify a BOT to be cache oblivious. We call the resulting
structure a cache-oblivious hash tree (COBOT).
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Much of the structure of the BOT translates directly into the cache-oblivious model.
However, some changes are necessary. In particular, when the series of character queues are
merged, this merge must be performed cache-obliviously using funnels [10], rather than with
an (up to) M/B-way merge. Also, the log cannot be buffered into sections of size O(B), and
so instead they are buffered into sections of constant size, items are immediately added to
routing filter, and the extra IOs are eliminated by optimal caching.

When an insertion is made into a COBOT, its fingerprint-value pair is appended to the
log, and it is immediately inserted into level 1. Thus, the leaves of the routing trees point to
single entries in the log.

The series of the character queues must be placed more carefully as well. In particular
the runs of series o; must be laid out back-to-back for all j (rather than just small j as in
Section 5.2), so that the caching algorithm can buffer them appropriately.

The series are merged using a partial funnelsort. Funnelsort is a cache-oblivious sorting
algorithm that makes use of K-funnels [10]. A K-funnel is a CO data structure that merges
K sorted lists of total length N. We make use of the the following lemma.

» Lemma 19 ( [10]). A K-funnel merges K sorted lists of total length N > K3 in
0 (% logy T+ K+ Xlogg %) 10s, provided the tall cache assumption that M = Q(B?)
holds.

The partial funnelsort used to merge K runs of a series with total length L (in words)
performs a single merge with a K-funnel if L > K3 and recursively merges the run in groups
of K/3 runs otherwise.

» Corollary 20. A partial funnelsort merges K runs of total word length L in
0 (%logM/B L+ Llogy %) 10s, provided the tall cache assumption that M = Q(B?)
holds.

Proof. The base case of the recursion occurs either when there is only 1 list remaining or
the remaining lists fit in memory. In any other case of the recursion, since L = Q(B?) by the
tall cache assumption, the K term in Lemma 19 is dominated.

The recurrence is dominated by the cost of the funnel merges, which yields the result. <

» Theorem 21. If M = Q(B?), then a COBOT with N entries and growth factor \ has
amortized insertion/deletion cost © (% ()\ + loglog M +logys/p N/B)). A query for key K
has cost © (Dg logy N), w.h.p., where Dy is the duplication count of K.

Proof. We may assume that the caching algorithm sets aside enough memory that the last
B items in the log, together with the subtree rooted at their least common ancestor, are
cached. Thus the log is updated at a per-item cost of O(1/B).
The proof of Theorem 3 now carries over to the COBOT. The routing filters are updated
the same way, and the cost of updating the character queues is unchanged, by Corollary 20.
Queries are performed as in Section 5.1, except that now the level 1 nodes cover O(1)
fingerprints, but the depth of the tree is unchanged, so the cost is the same. |
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