
Volume 6, number 6 INFORMATIOl’J PROCESSING LETTERS December 1977

UNDERSTANDING THE COMPLEXITY OF INTERPOLATIOP; SEARCH l

Yehoshua PERL
Deparrmenr of Mafhemarics and Computer Science, Bar-Ran University, Ramat Can, Israel

Edward M. REINGOLD l *

Department of Applied Mathematics, The Weknann tnsriwe of Science, Rehovot, Israel

Received 5 January 1977, revised version received 12 September 1977

Interpolation search, analysis of algorithms

1. Introduction

Interpolation searcl of an ordered table, due
originally to Peterson [by, has recently beeq analyzed.
The average number of i_” obes (key comparisons)
required when the n keys are drawn from a uniform
distribution has been shown to be lg lg n l in two
(independent) papers. Yao and Yao [6] use a very
complex combinatorial argument, and show further
that,interpolation search is, in a sense, optimal. In
Perl, Itai, and Avni [3] the analysis is based on proving
that the expected error of thej-th probe is at most
the square root of the expected error of the (j - 1)st
probe. From this it follows that the expected error in
the (lg lg n)th probe is O(l), and applying martingale
techniques from advanced probability theory yields
Ig Ig n probes as the average. Neither analysis gives any
simple intuition as to why interpolation search has
lg lg it average behavior.

in this paper we show that a quadratic application
of binary search yields a variant of conventional inter-
polation search that is easily shown to use about 2.4
lg lg n probes on ?he average. Tine analysis of this
variant requires only a simple argument, and the most

* This research was supported in part by the United States
National Science Foundation, Grant GJ-41538.

* On leave from Department of Computer Science, Urliversity
of Illinois at Urbana-Champaign, Urbana, II. 61801 USA.

t We use Ig x to represent the binary logarithm of,-.

basic results of probe: ‘lity theory. It thus clarifies the
behavior of interprlPti<;:: search and as such has great
pedagogical value.

2. Interpolation search

Interpolation search, as described by Peterson in [4]
(see also [2]), works as follows. Suppose we have an
ordered table of numeric keysxl <x2 < . . . <x,,
where the keys are drawn independently from a
uniform distribution over the range (x0, x,+ ,), and
suppose that we are to find the index i such that
xiQy<xi+, foragivenvaluey,xo<y<x,+l.
Since the keys are uniformly distributed, we may
expect that about p = iy - x&/(x,+ 1 - x0) of the
keys are less than y. Thus we make a probe y : xrpnl f
and if they are not equal we then apply the same
method recursiveiy to the appropriate subtable, xl,

. ..# -Qftl - I ify <xrpnl, andxrp,l+l, xn if
y >x rpnl. In the worst case this method can, of
course: require n probes, but on the average only
lg ig n probes are required ([3] and [6]).

3. Quadratic binary scmh

The lg lg n behavior suggests that it may be possible
to view interpolation search as a quadratic application
of the binary search technique whose average and

219

Volume 6, number 6 December 1977

---- _A\‘- .------_-_

__._p!<_::-I::::>~<_
__A /\ /\ ,I\ __-----------_----------------------

-l?i---/Lq--\ /J\ /i /f\ A /If._-- -------_------c----------_----P---

_jr_A__& A /f i /q /\ /[[/!\ h A /(A-i”;__b_

________-.-----Y----_-___---__-_-W____

XI x3 X5 X7 x9 x11 x13 x15 x17 ‘19 ‘21 ‘23 ‘25 ‘27 ‘29 ‘31 ‘33 ‘Xl ‘37 ‘30 ‘41 x4,s ‘45 ‘47 %9 x51 h % %? % mm xa

Fig. 1. The binary tree structure implicitly imposed on a table by binary search. The dashed lines separate the levels of the tree.

worst case behavior is well known to be about lg n
(see [2J or [S I). Consider the sequence of keys probed
when using binary search on a table of n keys. Since
binary search implicitly imposes the structure of a
binary tree of lg ir levels on the table (see Fig. I), the
search corresponds to scanning a path down the tree
from the root. The length of any such path is bounded
by ig rt, and this explain:: the logarithmic behavior of
binary search.

We can interpret binary search as performing a
sequentia! search of the vertices on the path down the
tree: this suggests that a lg 14 n search might result
from searching the vertices on the path by binaly
search. Unfortunately, we do qot know the path itself
before having applied binary search +o the edre table
of n keys. But, we can apply bin& v search to the
feuels of the tree (shown in Fig. 1 by dashed lines) i.e.
“cut” the tree at the middle level. It happens that the
resulting algorithm will be more natural if we concen-
trate on subtrees instead of levels; in other words, we
will use all! the keys in the top fig rr levels of the tree
to partition the ‘tree into & subtrees of about 4lg rt
levels each. This leads us to Fig. 2. By imagining that
each of the subtrees in the lower triangles is drawn in
the same way recxsively, Fig. 2 can be regarded as
considering the table to be a multiway tree of lg lg n
levels (see [2] or [S 1).

220

Fig. 2. A schematic version of the tree in Fig. 1. Imagine each
of the lower triangles to be drawn in the same way, recursively.

Each triangle shown in Fig. 2 consists of a subtree
containing about 4 keys from the table. We will see
in the next section that using an interpolation probe
followed by a sequential search in the upper triangle
to determine which of the lower triangles must be
searched requires only a constant number of probes,
on the average. Applying this method recursively to
the appropriate lower triangle (subtable) yields a
quadratic binary search that examines at most lg lg n
levels of the tree and thus uses O(log log n) probes on
the average.

4. Binary interpolation search

Actually, it is more convenient to shift the table so
that the fast probe in the subtable on which we are

Volume 6, number 6 INFORMATION PROCESSING LETTERS December 1977

interpolating (the upper triangle) is at the key _Q,,~ ,
as in the conventional interpolation search. This then
is the binary interpolation search for y, x0 < y <x,, ,
in the table xl <x2 < . . . <x,: The first probe is the
comparison y : xrpnl , p = (y - x0)/(x, + l - x0). if
y > ~“1 then y is successively compared with
Xrpnti+j 9 i = 1,2, g.a until the smallest i is found,
such that y < xrpnti+-l . Similarly, ify < xlpnl , y is
compared successively with xrp~_._i\/;;l, i = 1,2, . . .
In any case, the subtable of size 4 thus found is then
searched by applying the same technique recursively.

We must determine the expected number C of probes
required to determine the subtable of 4 keys. As in
[3] and [6], assume that the n keysx,, x2, x, are
drawn independently from a uniform distribution over
(xo, xnt 1). Then, since the xi are independent and
since p = (Jo - x0)/(x,+ I - x0) is the probability that
any one of them is less than or equal toy, the probabil-
ity that exactly j out of the n are less than y is
obviously (7) $11 - p)“” (see, for example, Feller
[11). The number of keys expected to be less than or
equal toy is thus

with variance

u2 =co(i-p,2)2(;)$(l -p)n-i=p(l -p)n.

Since 0 < p < 1, we have p(1 - p) d i and hence
o2 G $n.
We find C as follows.

C=iF, iPr(ex c a tl y i probes are used to determine
the subtable)

= c Pr (at least i probes are used to determine the
5, I subtable)

But at least two probes are always used (at xrr,‘pnl and
xrpnk~~), and for i > 3 we have, by definition

pr (at least i probes are used to determine the subtable)

< Pr(](location of y) - pnl > (i - 2) 6)

which is bounded above by 1/4(i - 2)2 by Chebyshev’s

inequality (see, for example, [11)

for a random variable x. with mean p and variance u2.
Thus

C<2+C!A
It2

ir34(i_2)2=2+ze2*4*

Let T(n) be the average number of probes us4 by
binary interpolation in searching a random tab!e ,lf 11
keys for y. Since the subtables of size 4~ are ag; in
random, we have

T(n) < C + T(&)

and thus T(n) G 2.4 lg lg n.

5. Concluding remarks

It is possible to sharpen the foregoing analysis by
using more accurate approximations than Chebyshev’s
inequality. For example, by using the DeMoivre-
Laplace limit theorem (see, for example, [I])‘we fiid
that for i Z 3

Pr (at least i probes are used to determine the subtable)

1 k&i
a l--

as
,-tx2 & .

n 4
-m

Using estimates for the “tail” of the normal distribution
(again, see for example [I]) we have that this is

I i-2 9

--
G2fi&2e

-2(i-2)2 -

since p(1 - p) < $. This gives

c~ 2 + C I -!- e-2(i-2)2
i>32*i-2

* 2.027029 .

There is a negligible probability that conventional
interpolation search will require proportional to n
probes in the worst case. The number of probes
required in the worst case by binary interpolation

221

Volume 6, number 6 INFORMATION PROCESS tNG LETTERS December 1977

search is obviously only & + 0(ti1’4). This is unim-
portant, however, for we can get a search technique
whose cost is at rziosf twice optimal in both the average
and worst cases: apply conventional interpolation
search and binary search alternatingly or in parallel.
This requires at most 2 Ig Ig n and 2 Ig n probes in the
average and worst cases, respectively. Such techniques
to improve the worst case at the expense of the
average case are of interest only if the distribution in
the tab!; is suspect. ff the distribution is uniform,
there is little utility in trying to improve the worst case
of conventional interpolation search, since as shown
in 131, the probability that even a tkw more than
lg lg n probes are required is very small.

The importance of the binary interpolation search
is not its behavior, but rather that it contributes to
the understanding of the behavior of interpolation
search.

References

[11 W. Feller, An Introduction to Probability Theory and its

Applications (3rd edition) (John Wiley, New York, 1968).
[2] D.E. Knuth, The Art of Computer Programming, Volume

3, Searching and Sorting (Addison-Wesley, Reading, MA,
1973).

131 Y. Per], A. Itai and H. Avni, Interpolation Search - A
log log n Search, Comm. ACM, to appear.

(4) W.W. Peterson, Addressing for random access storage,
IBM J. Res. Develop. 1 (1957) 131-132.

[S] E.M. Reingold, 1. Nievergelt and N. Deo, Combinatorial
Algorithms: Theory and Practice (Prentice-Hall, Engle-
wood Cliffs, N.J., 1977).

[6 J A.C. Yao and F.F. Yao, The Complexity of Searching an
Ordered Random Table, Proceedings of the Seventeenth
Annual Symposium on Foundations of Computer Science
(1976) 173-177.

222

