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1. Introduction 

Interpolation searcl of an ordered table, due 
originally to Peterson [by, has recently beeq analyzed. 
The average number of i_” obes (key comparisons) 
required when the n keys are drawn from a uniform 
distribution has been shown to be lg lg n l in two 
(independent) papers. Yao and Yao [6] use a very 
complex combinatorial argument, and show further 
that,interpolation search is, in a sense, optimal. In 
Perl, Itai, and Avni [3] the analysis is based on proving 
that the expected error of thej-th probe is at most 
the square root of the expected error of the (j - 1)st 
probe. From this it follows that the expected error in 
the (lg lg n)th probe is O(l), and applying martingale 
techniques from advanced probability theory yields 
Ig Ig n probes as the average. Neither analysis gives any 
simple intuition as to why interpolation search has 
lg lg it average behavior. 

in this paper we show that a quadratic application 
of binary search yields a variant of conventional inter- 
polation search that is easily shown to use about 2.4 
lg lg n probes on ?he average. Tine analysis of this 
variant requires only a simple argument, and the most 
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t We use Ig x to represent the binary logarithm of,-. 

basic results of probe: ‘lity theory. It thus clarifies the 
behavior of interprlPti<;:: search and as such has great 
pedagogical value. 

2. Interpolation search 

Interpolation search, as described by Peterson in [4] 
(see also [2]), works as follows. Suppose we have an 
ordered table of numeric keysxl <x2 < . . . <x,, 
where the keys are drawn independently from a 
uniform distribution over the range (x0, x,+ ,), and 
suppose that we are to find the index i such that 
xiQy<xi+, foragivenvaluey,xo<y<x,+l. 
Since the keys are uniformly distributed, we may 
expect that about p = iy - x&/(x,+ 1 - x0) of the 
keys are less than y. Thus we make a probe y : xrpnl f 
and if they are not equal we then apply the same 
method recursiveiy to the appropriate subtable, xl, 

. ..# -Qftl - I ify <xrpnl, andxrp,l+l, . . . . xn if 
y >x rpnl. In the worst case this method can, of 
course: require n probes, but on the average only 
lg ig n probes are required ([3] and [6]). 

3. Quadratic binary scmh 

The lg lg n behavior suggests that it may be possible 
to view interpolation search as a quadratic application 
of the binary search technique whose average and 
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Fig. 1. The binary tree structure implicitly imposed on a table by binary search. The dashed lines separate the levels of the tree. 

worst case behavior is well known to be about lg n 
(see [2J or [S I). Consider the sequence of keys probed 
when using binary search on a table of n keys. Since 
binary search implicitly imposes the structure of a 
binary tree of lg ir levels on the table (see Fig. I), the 
search corresponds to scanning a path down the tree 
from the root. The length of any such path is bounded 
by ig rt, and this explain:: the logarithmic behavior of 
binary search. 

We can interpret binary search as performing a 
sequentia! search of the vertices on the path down the 
tree: this suggests that a lg 14 n search might result 
from searching the vertices on the path by binaly 
search. Unfortunately, we do qot know the path itself 
before having applied binary search +o the edre table 
of n keys. But, we can apply bin& v search to the 
feuels of the tree (shown in Fig. 1 by dashed lines) i.e. 
“cut” the tree at the middle level. It happens that the 
resulting algorithm will be more natural if we concen- 
trate on subtrees instead of levels; in other words, we 
will use all! the keys in the top fig rr levels of the tree 
to partition the ‘tree into & subtrees of about 4lg rt 
levels each. This leads us to Fig. 2. By imagining that 
each of the subtrees in the lower triangles is drawn in 
the same way recxsively, Fig. 2 can be regarded as 
considering the table to be a multiway tree of lg lg n 
levels (see [2] or [S 1). 
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Fig. 2. A schematic version of the tree in Fig. 1. Imagine each 
of the lower triangles to be drawn in the same way, recursively. 

Each triangle shown in Fig. 2 consists of a subtree 
containing about 4 keys from the table. We will see 
in the next section that using an interpolation probe 
followed by a sequential search in the upper triangle 
to determine which of the lower triangles must be 
searched requires only a constant number of probes, 
on the average. Applying this method recursively to 
the appropriate lower triangle (subtable) yields a 
quadratic binary search that examines at most lg lg n 
levels of the tree and thus uses O(log log n) probes on 
the average. 

4. Binary interpolation search 

Actually, it is more convenient to shift the table so 
that the fast probe in the subtable on which we are 
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interpolating (the upper triangle) is at the key _Q,,~ , 
as in the conventional interpolation search. This then 
is the binary interpolation search for y, x0 < y <x,, , 
in the table xl <x2 < . . . <x,: The first probe is the 
comparison y : xrpnl , p = (y - x0)/(x, + l - x0). if 
y > ~“1 then y is successively compared with 
Xrpnti+j 9 i = 1,2, g.a until the smallest i is found, 
such that y < xrpnti+-l . Similarly, ify < xlpnl , y is 
compared successively with xrp~_._i\/;;l, i = 1,2, . . . 
In any case, the subtable of size 4 thus found is then 
searched by applying the same technique recursively. 

We must determine the expected number C of probes 
required to determine the subtable of 4 keys. As in 
[3] and [6], assume that the n keysx,, x2, . . . . x, are 
drawn independently from a uniform distribution over 
(xo, xnt 1). Then, since the xi are independent and 
since p = (Jo - x0)/(x,+ I - x0) is the probability that 
any one of them is less than or equal toy, the probabil- 
ity that exactly j out of the n are less than y is 
obviously (7) $11 - p)“” (see, for example, Feller 
[ 11). The number of keys expected to be less than or 
equal toy is thus 

with variance 

u2 =co(i-p,2)2(;)$(l -p)n-i=p(l -p)n. 

Since 0 < p < 1, we have p(1 - p) d i and hence 
o2 G $n. 
We find C as follows. 

C=iF, iPr( ex c a tl y i probes are used to determine 
the subtable) 

= c Pr (at least i probes are used to determine the 
5, I subtable) 

But at least two probes are always used (at xrr,‘pnl and 
xrpnk~~ ), and for i > 3 we have, by definition 

pr (at least i probes are used to determine the subtable) 

< Pr(](location of y) - pnl > (i - 2) 6) 

which is bounded above by 1/4(i - 2)2 by Chebyshev’s 

inequality (see, for example, [ 11) 

for a random variable x. with mean p and variance u2. 
Thus 

C<2+C!A 
It2 

ir34(i_2)2=2+ze2*4* 

Let T(n) be the average number of probes us4 by 
binary interpolation in searching a random tab!e ,lf 11 
keys for y. Since the subtables of size 4~ are ag; in 
random, we have 

T(n) < C + T(&) 

and thus T(n) G 2.4 lg lg n. 

5. Concluding remarks 

It is possible to sharpen the foregoing analysis by 
using more accurate approximations than Chebyshev’s 
inequality. For example, by using the DeMoivre- 
Laplace limit theorem (see, for example, [I ])‘we fiid 
that for i Z 3 

Pr (at least i probes are used to determine the subtable) 

1 k&i 
a l-- 

as 
,-tx2 & . 

n 4 
-m 

Using estimates for the “tail” of the normal distribution 
(again, see for example [I]) we have that this is 

I i-2 9 

-- 
G2fi&2e 

-2(i-2)2 - 

since p(1 - p) < $. This gives 

c~ 2 + C I -!- e-2(i-2)2 
i>32*i-2 

* 2.027029 . 

There is a negligible probability that conventional 
interpolation search will require proportional to n 
probes in the worst case. The number of probes 
required in the worst case by binary interpolation 

221 



Volume 6, number 6 INFORMATION PROCESS tNG LETTERS December 1977 

search is obviously only & + 0(ti1’4). This is unim- 
portant, however, for we can get a search technique 
whose cost is at rziosf twice optimal in both the average 
and worst cases: apply conventional interpolation 
search and binary search alternatingly or in parallel. 
This requires at most 2 Ig Ig n and 2 Ig n probes in the 
average and worst cases, respectively. Such techniques 
to improve the worst case at the expense of the 
average case are of interest only if the distribution in 
the tab!; is suspect. ff the distribution is uniform, 
there is little utility in trying to improve the worst case 
of conventional interpolation search, since as shown 
in 131, the probability that even a tkw more than 
lg lg n probes are required is very small. 

The importance of the binary interpolation search 
is not its behavior, but rather that it contributes to 
the understanding of the behavior of interpolation 
search. 
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