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Abstract

In this paper, we make use of the Metropolis-type walks due
to Nonaka et al. (2010) to provide a faster solution to the S -
T -connectivity problem in undirected graphs (USTCON).

As our main result, we propose a family of randomized
algorithms for USTCON which achieves a time-space prod-
uct of S · T = Õ(n2) in graphs with n nodes and m edges

(where the Õ-notation disregards poly-logarithmic terms).

This improves the previously best trade-off of Õ(nm), due
to Feige (1995). Our algorithm consists in deploying several
short Metropolis-type walks, starting from landmark nodes
distributed using the scheme of Broder et al. (1994) on a
modified input graph. In particular, we obtain an algorithm
running in time Õ(n + m) which is, in general, more space-
efficient than both BFS and DFS.

We close the paper by showing how to fine-tune the

Metropolis-type walk so as to match the performance pa-

rameters (e.g., average hitting time) of the unbiased random

walk for any graph, while preserving a worst-case bound of

Õ(n2) on cover time.

1 Introduction

In the undirected S -T connectivity problem (UST-
CON), the input to the algorithm is an undirected graph
G = (V,E) with n vertices and m edges. Two of the
vertices of the graph, S ,T ∈ V , are distinguished.
The goal is to determine whether S and T belong
to the same connected component of G. USTCON
has a spectrum of applications in various areas of com-
puter science, ranging from tasks of network discovery
to computer-aided verification. The problem has also
made its mark on complexity theory, most famously,
playing a central part in the rise and eventual collapse
of the complexity class SL.

The time complexity of algorithms for USTCON
depends on the amount of space available to the al-
gorithm. Given Θ̃(n) space, USTCON can be solved
deterministically in time O(m) by fast algorithms such
as BFS or DFS. Given Θ(log n) space, the problem can
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still be solved deterministically [21] in polynomial time.
However, in this case the fastest known solutions are
randomized. Aleliunas et al. [2] proposed a log-space al-
gorithm with bounded error probability, which consists
in running a random walk, starting from node S for
O(nm) steps, and testing if node T has been reached.

The study of the interplay between the space com-
plexity S and the time complexity T of randomized
algorithms for USTCON was initiated by Broder et
al. [10]. They observed that both BFS/DFS, and the
random walk, admit the same time-space trade-off of
T = Õ(mnS ), and investigated whether there exist algo-
rithms with such a trade-off for an arbitrary choice of S,
c · log n ≤ S ≤ n, where c > 0 is some model-dependent
constant. After a sequence of papers relying on the de-
ployment of many short random walks, this question
was eventually settled in the affirmative by Feige [14],
who proposed a family of algorithms which achieve such
a time-space trade-off in the whole of the considered
range of space bounds.

The main result of this paper is an improved time-
space trade-off for USTCON. Since the cover time of
the random walk is precisely Θ(nm) for some graphs,
any improvement with respect to Aleliunas et al. [2] or
Feige [14] requires a refinement of the performed walk
on graphs. Instead of the random walk, we make use of
the Metropolis-Hastings walk on graphs, with weight-
ing proposed by Nonaka et al. [20]. This walk covers

any undirected graph in Õ(n2) steps, but its transition
probabilities rely on knowledge of the degrees of neigh-
boring nodes at every step. We start the technical sec-
tions of this paper with an explicit implementation of
the walk from [20] using the Metropolis sampling algo-
rithm from [18]. This yields a solution to USTCON in

Õ(n2) time and logarithmic space. Our contribution
lies in completing this quadratic time-space trade-off
for larger bounds on the space complexity of the algo-
rithm. The main technical difficulty concerns overcom-
ing problems with short runs of the Metropolis-Hastings
walk, which sometimes exhibits inferior behavior to the
random walk in terms of the speed of discovering new
nodes.
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For the entire range of space bounds (c · log n ≤
S ≤ n), we propose algorithms running in time T =

Õ(max{n
2

S ,m}). In other words, we obtain T = Õ(n
2

S )

for S ≤ n2

m , and T = Õ(m) for S > n2

m . (Note that
T = Ω(m) is a lower bound on execution time for any
algorithm for USTCON, regardless of the space bound.)
In particular, we prove that USTCON can be solved in

time Õ(m) using space O(n
2

m ), which is, in general, less
than the space requirement of BFS/DFS.

All of the considered algorithms for USTCON are
randomized (in the Monte Carlo sense), with bounded
probability of one-sided error. This means that the
positive answer “connected” may only be reached by the
algorithm when S and T belong the same connected
component of G, whereas the negative answer “not
connected” signifies that, with probability at least 2/3,
S and T belong to different components of G.

1.1 Related work. Much of the work on undirected
S -T connectivity has focused around its role as the
fundamental complete problem for the symmetric log-
space complexity class (SL). A survey of other impor-
tant problems identified as belonging to the class SL,
such as simulating symmetric Turing machines, and
testing if a graph is bipartite, is provided in [3]. A
major line of study concerned determining the mini-
mum space required to solve USTCON deterministi-
cally. The bound on the required space was reduced,
over several decades, from the O(log2 n) bound given

by Savitch’s theorem [22], through O(log3/2 n) [23], and

O(log4/3 n) [4]. Finally, in 2004, Reingold’s [21] new
construction of universal graph exploration sequences
provided the first log-space algorithm for USTCON,
showing that SL=L. Befor Reingold’s paper, Nisan [19]
had shown a deterministic algorithm for USTCON run-
ning in polynomial time and O(log2 n) space. Borodin
et al. [9] proposed a log-space Las-Vegas type algorithm
for USTCON (with no-error) which runs in expected
polynomial time.

When considering randomized algorithms with
bounded one-sided error, the unbiased random walk was
shown to solve USTCON in O(log n) space and Õ(mn)
time by Aleliunas et al. [2]. Several years later, Broder
et al. [10] proposed a family of algorithms based on short
random walks starting from landmark nodes. Relying
on landmarks chosen on the set of nodes according to
the stationary distribution of the walk, they achieved a

time-space trade-off of T = Õ(m
2

S ). Subsequent algo-
rithms from the literature [5, 14] make use of different
landmark distribution schemes. Barnes and Feige [5]

achieve a trade-off of T = Õ(m
1.5n0.5

S ) by using a mixed
landmark distribution scheme, which places half of the

landmarks according to the stationary distribution of
the random walk, and half according to the uniform
distribution on nodes. Feige [14] introduces the inverse
distribution scheme, which likewise places half of the
landmarks according to the stationary distribution of
the random walk, and the other half according to the
inverse of node degrees. He achieves a time-space trade-

off of T = Õ(mn/δS ) in general, where δ is the minimum

degree of the graph. Thus, the trade-off of T = Õ(n
2

S )
is reached for the case of (nearly) regular graphs.

Undirected S -T connectivity is a special case
of the more general reachability problem in directed
graphs (STCON), which is a complete problem for the
class NL. STCON can also be solved deterministically in
O(log2 n) space using Savitch’s theorem [22]. So far, it
has resisted fast solutions in small space. This problem
was extensively studied in different variants of a model
of computation based on Jumping Automata on Graphs
(JAG-s). The memory of a JAG is organized in the form
of P pebbles placed in the graph and Q states of the
automaton, with space defined as S = P log n + logQ.
Cook and Rackoff [12] show a way of solving STCON
in the JAG model deterministically in O(log2 n) space,
and also prove an almost matching lower bound on
space of Ω(log2 n/ log log n). This lower bound is also
known to apply to randomized JAG-s running in slightly
super-polynomial time [8]. Gopalan et al. [15] propose a
family of algorithms for STCON based on short random
walks, whose runtime increases from O(nlogn) to O(nn)
as space decreases from O(log2 n) to O(log n).

Finally, we remark on recent developments in the
area of graph exploration with biased random walks.
Ikeda et al. [17] and Nonaka et al. [20] studied possible
adjustments to the transition matrix of the walk based
on the availability of local topological information (oth-
erwise known as “look-ahead”). In general, the idea of
these approaches is to increase the probability of tran-
sition to a node of lower degree. The former paper in-
troduces a new type of walk, called the β-walk, whose
transition matrices are biased so that transition from
a node to its neighbor of degree d is proportional to
d−β . Such a walk was shown to visit all nodes of the
graph in O(n2 log n) steps in expectation for an optimal
choice of parameter β = 1/2. Nonaka et al. [20] later
used the key lemmas from this work to prove an analo-
gous result for a walk with a modified transition matrix,
which fits into the class of Metropolis-Hastings walks.
This walk is the starting point for considerations in our
paper. A somewhat different approach was adopted by
Berenbrink et al. [7], who show that a random walk with
the additional capability of marking one unvisited node
in its neighborhood as visited can be used to speed up
exploration.
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1.2 Overview of the paper. The organization of
the technical parts of the paper is the following. In
Section 2, we recall the definition of the Metropolis-
Hastings walk and provide its efficient implementation
using the Metropolis algorithm. In this way, given a
representation of graph G, each step of the walk can
be simulated by a procedure running in Õ(1) time and
using Θ(log n) bits of space.

We subsequently identify the key properties of
the unit-potential Metropolis-Hastings walk, denoted
RW (G1), which allow it to be used as a replacement
for the (unbiased) random walk on G, denoted RW (G),
in algorithms solving USTCON. The major difference
between these types of walks is that a short random walk
RW (G) has the desirable property of low edge-return
rate, i.e., each edge of the graph is visited O(

√
t) times

in expectation during t steps of the walk (for sufficiently
small t). However, no analogous property hold for the
Metropolis-Hastings walk. In fact, on some graphs (e.g.,
the glitter star defined in [20]), the Metropolis-Hastings
walk RW (G1), will in expectation discover only O(1)
edges during t steps of the walk, visiting each of these
edges Ω(t) times (for any choice of t ≤ n). We overcome
this problem in two stages:

• In Section 2 we prove that in a graph of maximum
degree ∆, the Metropolis-Hastings walk RW (G1)
begins to achieve a low node-return rate starting
from a threshold length of ∆2 steps: a Metropolis-
Hastings walk of length t, ∆2 < t < n2, visits each
node of the graph O(

√
t) times in expectation. This

property is formally stated as Lemma 2.3.

• In Section 3 we show how to obtain the trade-
off T = Õ(max{n

2

S ,m}) for an arbitrary choice of
space bound S. Our initial approach makes use of
a modification of a technique introduced by Broder
et al. [10]. It consists in running p ≈ S walks of

length t ≈ n2

S2 each, which originate from an ap-
propriately chosen subset of p nodes of the graph
called landmarks. In our formulation, the walks
used are Metropolis-Hastings walks (rather than
random walks on G), and the set of landmarks is
sampled uniformly on V . By observing the visits of
each of these walks to other landmarks from the set,
it is possible to obtain information about paths con-
necting different landmarks. When the performed
Metropolis-Hastings walks have a low node-return
rate (i.e., when t > ∆2), the obtained information
turns out to be w.h.p. sufficient to find an answer to
S -T connectivity with a low probability of error.
Otherwise, when t < ∆2, we modify the approach,
performing a logical transformation of graphG. We
split each node of degree greater than

√
t, so that

the maximum degree of the modified graph does not
exceed

√
t. Then, all of the considerations are per-

formed for this modified graph. In particular, the
set of landmark nodes is chosen by uniform sam-
pling on the set of nodes of this modified graph.
The overhead associated with this transformation
is just small enough for our algorithm to have the

claimed time complexity of T = Õ(max{n
2

S ,m}).

Finally, in the closing Section 4 we discuss the tight-
ness of the obtained results. We also propose a modified
weighting of the Metropolis-Hastings walk which per-
forms faster than uniform-weighted Metropolis-Hastings
for many classes of graphs, while still covering all the
nodes of the graph in Õ(n2) time. This walk satisfies
the property that its commute time between any pair of
nodes (and consequently also the average hitting time)
is asymptotically upper-bounded by the values of the
respective parameters for the unbiased random walk.
In particular, it covers all the nodes of the previously
mentioned glitter star, in expected Õ(n) steps.

1.3 Notation and model. The input graph G =
(V,E), with |V | = n and |E| = m, is simple and not
necessarily connected. In order to simplify notation for
complexity bounds, we assume m = Ω(n). The degree
of a node v ∈ V is denoted by deg(v), the neighborhood
of node v by Γ(v), and the closed neighborhood of v by
Γ+(v) = Γ(v)∪{v}. The maximum degree of the graph

is denoted by ∆. The arc set ~E ⊆ V × V of undirected
graph G is understood as the set of arcs of all edges
and self-loops of G: ~E = {(v, u) : v ∈ V, u ∈ Γ+(v)}.
An arc (v, u) ∈ ~E is sometimes denoted as evu for
compactness of notation. Note that the symbols V , E,
∆, n, m always refer to the input graph G. When
considering a different graph X, we will sometimes
denote its vertex, edge, and arc sets by V (X), E(X),

and ~E(X), respectively.
Our algorithms are designed for the classical RAM

model of computation. No special assumptions are
made on the representation of graph G, except that for
any node v ∈ V , there should exist a local ordering
on the set of its neighbors, given by the bijective
function PORTv : Γ(v) → {0, 1, . . . ,deg(v) − 1}.
Each of the following operations should be possible to
implement in Õ(1) time: computing deg(v), computing
PORTv(u) for a node u ∈ Γ(v), and “traversing
an edge” by computing PORT−1

v (i), for port i ∈
{0, 1, . . . ,deg(v) − 1}. An example of a permissible
representation is a lexicographically sorted array of
ordered pairs of identifiers of neighboring nodes (u, v),
taken over {u, v} ∈ E.
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For most of the paper, we consider weighted re-
versible Markovian processes corresponding to a ran-
dom walk RW (X) on some weighted undirected graph
X with positive weights on arcs. The walk is located
on the nodes of graph X, and the next state of the
walk is reached by following an arc incident to the cur-
rent node, chosen with probability proportional to the
weight of this arc. By a slight abuse of notation, we
denote the transition matrix of the walk in the same
way as the weighted graph. Most other notation follows
that of Aldous and Fill [1]. In particular, we consider
the following random variables:

• Na(t) denotes the number of steps in the time
interval [0, t) during which the walk visits a, where
the symbol a may represent a node, edge, or arc of
the graph.

• Ta denotes the first moment of time t > 0 at which
the walk first visits (or returns to) a node from a,
where the symbol a may represent a subset of nodes
or a single node of the graph.

By writing EαY and Prα[E], respectively, we mean the
expectation of random variable Y , and the probability
of event E occurring, taken over walks starting from
probability distribution α (which may be concentrated
on a single node or arc). A walk starting from an arc
is understood as one which starts from the head of the
arc at time 0, and then moves to the tail of the arc at
time 1.

Given a weighted graph X, we denote by
Com(i, j) ≡ EiTj + EjTi the commute time between
nodes i, j ∈ V (X). Throughout the paper, we con-
sider only walks representing reversible Markovian pro-
cesses, corresponding to symmetric weightings of the
graph: w(evu) = w(euv), for all (u, v) ∈ ~E. In some
of the proofs, we rely on the resistor network represen-
tation of reversible walks: for each edge e = {u, v} ∈
E(X) having weight w(e) on each of its arc, a resis-
tor with resistance 1/w(e) is placed between nodes u
and v of the resistor network. The symbol R(u, v)
denotes the resistance of replacement between nodes
u and v of the network. We recall that Com(i, j) =
R(i, j)

∑
e∈~E(X) w(e). [11]

2 Preliminaries: The Metropolis-Hastings
Walk on Graphs

The Metropolis-Hastings walk with potential function
f : V → R+ is defined as a walk on the weighted
graph Gf = (V,E,wf ) with the following assignment

of weights wf : ~E → R+:

wf (evu) = min

{
f(v)

deg(v)
,
f(u)

deg(u)

}
, for all {v, u} ∈ E,

wf (evv) = f(v)−
∑

u∈Γ(v)

wf ({v, u}), for all v ∈ V.

We recall that for a walk in state v ∈ V , the next state
is chosen as u ∈ Γ(v)∪{v} with probability proportional
to the weight wf (evu).

Definition 1. We denote by G1 the weighted graph Gf
for the unit potential function f(v) ≡ 1.

The bound on the time required by the Metropolis-
Hastings walk RW (G1) to discover w.h.p. the entire
connected component containing the starting node of
the walk follows from the considerations of Nonaka et
al. [20].

Lemma 2.1. ([20]) Let i ∈ V , let H be the connected
component of G containing node i, and let nH =
|V (H)|. Then:

• a walk RW (G1) of length 12n2
H starting from i

covers an arbitrary node j ∈ V (H) with probability
at least 1

2 .

• a walk RW (G1) of length 24n2
H log n starting from i

covers all nodes from V (H) with probability at least
1− 1

n .

By a classical result due to Metropolis et al. [18], for
a given representation of graph G, a single step of the
Metropolis-Hastings walk RW (Gf ) can be simulated in

Õ(1) time and space by means of the procedure shown
in Algorithm 2.1. The algorithm takes advantage of the
fact that wf (evu)/

∑
x∈Γ+(v) wf (evx) ≤ 1

deg(v) , for all

u ∈ Γ(v). For a walk located at node v, it samples
a node u ∈ Γ(v) with uniform probability 1

deg(v) ,

and accepts u as the new state with the appropriate
probability. We remark that a step of RW (Gf ) can also
be simulated by a log-space automaton which pushes a
pebble along the arc (v, u). The pebble remains at u
if state u is accepted, and otherwise reverts to v by
traversing the arc (u, v). Thus, one step of RW (Gf )
can be simulated by at most two moves of a pebble.

Algorithm 2.1. State transition function on V
for the walk RW (Gf ).

function next state (v: node) {
// pick a new state
u← neighbor of v in G chosen uniformly at random;
// decide whether to accept and move to new state

with probability min{ deg(v)
deg(u)

f(u)
f(v) , 1} do return u;

// do not accept: keep current state
return v;

}
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Taking into account Lemma 2.1, USTCON can be
solved in log-space with probability 1 − 1

n by running
Algorithm 2.1 for the walk RW (G1), starting from S ,
in a loop for 24n2 log n iterations.

Corollary 2.1. There is a log-space algorithm for
USTCON which runs in time O(n2 log n), with prob-
ability of one-sided error bounded by 1

n . �

We are unaware of any previous reference in the
literature for the above observation.

For the next two sections, we focus on the
Metropolis-Hastings walk RW (G1). We note that the
weights on the edges of G are now simply given by
w(evu) = min{ 1

deg(v) ,
1

deg(u)}. For our purposes, we will

need a more detailed analysis of the behavior of the
Metropolis-Hastings walk. We start by recalling that
the Metropolis-Hastings walk RW (G1) is a reversible
Markovian process, since w(evu) = w(euv) for all arcs.
Its stationary distribution is the uniform distribution
π : V → R+, with π(v) = 1

n , for all v ∈ V . As a result,
the following simple properties follow.

Lemma 2.2. For all i, j ∈ V :

(2.1) EiNj(t) = EjNi(t).

Moreover, for any node i ∈ V :

(2.2) EπNi(t) =
t

n

and for any arc eij of G corresponding to an edge
{i, j} ∈ E:

(2.3) EπNeij (t) =
t

n
min

{
1

deg(i)
,

1

deg(j)

}
. �

This allows us to show the following key lemma
which captures the “low node-return rate” property
of the Metropolis-Hastings walk, as highlighted in the
Introduction. The first claim states that a Metropolis-
Hastings walk starting within any subset of nodes A (
V is likely to leave it within O(|A|2) steps, while its
second claim shows that a Metropolis-Hastings walk
of length t is likely to return to its starting node
not more than O(

√
t) times. However, both of the

above statements hold only when considering walks of
duration Ω(∆2).

Lemma 2.3. Suppose that G is connected. Let A ( V ,
and let i ∈ A. For a weighted random walk RW (G1)
starting from node i:

(i) the expected time to reach a node from V \ A is
bounded by:

EiTV \A < (|A|+ 1)(6|A|+ 2∆),

(ii) the expected number of visits to node i before any
time t, 0 < t < 6n2, is bounded by:

EiNi(t) < 5
√
t+ 2∆.

Proof. The proof of the lemma follows by an analysis of
resistances of replacement along shortest paths in the
resistor network for the weighted graph G1. It resembles
the argumentation for short random walks in regular
graphs (cf. [1], Chapter 6).

Claim (i): Consider a shortest path P in graph
G from i to a nearest vertex j ∈ V \ A. Let P =
(i0, i1, . . . , ia, j), where i0 = i, and il ∈ A, for 0 ≤
l ≤ a. Let G◦ be the subgraph of G induced by
nodes from set A, their neighbors in G, and node j:
G◦ = G[A ∪N(A) ∪ {j}]. Since any random walk in G
which starts from i and does not enter V \A is confined
to nodes and edges of graph G◦, we have the following
relation between the walks RW (G1) and RW (G◦1):

(2.4) EiTV \A ≤ EiT ◦V \A = EiT ◦j < Com◦(i, j) =

= R◦(i, j)
∑

e∈~E(G◦)

w(e),

where the latter equality follows from the electrical
network representation of random walks. The resistance
R◦(i, j) is upper-bounded by the resistance of the series
connection going through the nodes of path P in G:

R◦(i, j) ≤ 1
w(ei0i1 ) + 1

w(ei1i2 ) +. . .+ 1
w(eia−1ia

) + 1
w(eiaj)

=

=max{deg(i0),deg(i1)}+. . .+max{deg(ia−1),deg(ia)}+

+ max{deg(ia),deg(ij)} < 2

a−1∑
l=0

deg(il) + 2∆.

Since the path Ps = (i0, i1, . . . , ia−1) is a shortest path
in graph G between nodes i0 and ia−1, such that Ps ⊆ A
and Γ(Ps) ⊆ A, it follows that (cf. [1]):

a−1∑
l=0

deg(il) ≤ 3|A|,

and:

(2.5) R◦(i, j) < 6|A|+ 2∆.
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Since the total weight of edges and self-loops of G
incident to a vertex in V is equal to 1, we have:

(2.6)
∑

e∈~E(G◦)

w(e) ≤
∑
v∈A

 ∑
u∈Γ(v)∪{v}

w(evu)

+

∑
u∈Γ(j)∪{j}

w(eju) ≤ |A|+ 1.

Claim (i) follows from inequalities (2.4), (2.5), and (2.6).

Claim (ii): Suppose that s =
√

6t ≥ t
n , and let:

A = {j ∈ V : EiNj(t) > s}.

Since the considered walk hits nodes from V a total
of (at most) t times, we have |A| < t

s ≤ n, and the
considerations performed in the proof of Lemma 2.3(i)
can be applied for the above-defined set A.

First, we bound the expected number of returns to
node i for a walk starting at i before reaching V \A for
the first time:

EiNi(TV \A) = 1 + (1− Pri[TV \A < Ti]) · EiNi(TV \A)

=⇒ EiNi(TV \A) =
1

Pri[TV \A < Ti]
.

Taking into account [1] (Chapter 3, eq. (28) and
Corollary 11) and bound (2.5), we have:

EiNi(TV \A) =
1

Pri[TV \A < Ti]
=

= π(i) ·R(i, j) ·
∑

e∈~E(G)

w(e) ≤ π(i) ·R◦(i, j) ·
∑

e∈~E(G)

w(e) <

(2.7) <
1

n
· (6|A|+ 2∆)n = 6|A|+ 2∆ < 6

t

s
+ 2∆.

It follows from (2.1) that the definition of set A may be
rewritten as:

A = {j ∈ V : EjNi(t) > s}

Thus, V \A = {j ∈ V : EjNi(t) ≤ s}, which means that
if a walk starting from i reaches V \ A, it will return
to i at most s times in expectation before time t. So,
using (2.7), we obtain the claim:

EiNi(t) ≤ EiNi(TV \A)+s < 6
t

s
+s+2∆ = 2

√
6t+2∆ <

< 5
√
t+ 2∆. �

3 A time-space trade-off for USTCON

The time-space tradoffs for USTCON proposed by
Broder et al. [10] make use of a number of short random
walks, originating from a subset of nodes of the graph
called landmarks. Herein, we design an algorithm which
replaces these random walks by Metropolis-Hastings
walks.

We start by a brief overview of the landmark-based
approach. When considering an algorithm using space
S, the size of the set of landmarks is defined by a
parameter p = Θ(S/ log n). The algorithm first chooses
a set of landmarks L ⊆ V consisting of p + 2 nodes:
node S , node T , and p nodes picked (in the case
of our work) uniformly at random from V . Then,
a walk of suitably chosen length t is released from
each of the landmarks. Throughout this process, the
algorithm maintains a disjoint-set data structure (also
known as “Union-Find” [16]) on the set of landmarks,
with each set corresponding to the landmarks identified
as belonging to the same connected component of the
graph.

Initially, each landmark belongs to a separate set.
Whenever a walk starting from one landmark hits
some other landmark, the algorithm updates the data
structure, merging the classes corresponding to these
two landmarks. At the end of the process, if landmarks
S and T belong to the same class, then, with certainty,
there exists an S -T path in G, and the answer to
USTCON is positive. Otherwise, the algorithm returns
a negative result, and, in the rest of this Section, we
focus on proving that this result is correct w.h.p.

The runtime of the algorithm of Broder et al. is
determined by the time of running p = Θ̃(S) random

walks of length t each, thus T = Õ(tp) = Õ( tp
2

S ). To

achieve the claimed trade-off of T = Õ(n
2

S ), we will

therefore need to use walks of length roughly t ≈ n2

p2 .

3.1 An initial approach. We fix a value of the pa-
rameter p = O(S), describing the number of landmark
nodes. The landmark-based algorithms are built around
the premise that landmarks belonging to the same con-
nected component of G quickly discover each other with
the help of the short walks they release. In particular, it
is desirable that the set of landmarks in each connected
component of G has the property that for any partition
of the set of landmarks into two subsets, a short walk
originating from a landmark in one of these subsets is
likely to reach some landmark from the other subset.
Broder et al. [10] observe (cf. also [14] for a high-level
exposition of the argument) that this property is sat-
isfied if the considered set of landmarks is good, i.e., it
fulfills the following two assumptions. Firstly, the set of
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short walks originating from all of the landmarks should
be likely to jointly cover all the arcs of the graph. Sec-
ondly, a short walk originating from an arbitrary start-
ing node of the graph should be likely to reach at least
one landmark from the set.

Most of the analysis and key lemmas in this sub-
section follow along the lines proposed by Broder et al.
We confine ourselves to a summary of the approach,
highlighting the subtle differences resulting from the
use of Metropolis-Hastings walks. We start by re-
setting the good landmark property in the context of
Metropolis-Hastings walks RW (G1) of a specifically
chosen length τ .

Property 3.1. Let L ⊆ V be the set of p = |L|
landmark nodes, let H be a connected component of G,
and let np = max{γ np log n,∆}, where γ = 60 is a

suitably chosen absolute constant (whose value follows
from the proof of Lemma 3.3). We say that the set of
landmarks L is good with respect to H if the following
properties hold:

• With probability at least 1 − 1
n , a set of p walks

RW (G1) of length τ = n2
p each, with one walk

originating from each landmark from L, covers an
arbitrarily chosen arc of H.

• With probability at least 1 − 1
n , a walk RW (G1)

of length τ = n2
p, originating from an arbitrarily

chosen node of H, hits some landmark from L.

In the above property, the choice of the length τ
of the walk takes into account that walks of length

Õ(n
2

p2 ) lead us to the sought time complexity of Õ(n
2

p )
for the algorithm. However, in order to ensure that a
uniformly sampled landmark set is likely to be good,
we will make use of the low node-return rate of the
Metropolis-Hastings walk from Lemma 2.3, and thus we
need to have τ = Ω(∆2).

We will now show that that Property 3.1 holds
w.h.p. for a set of landmarks, each of which is chosen
according to the uniform distribution π on the set of
nodes V . To achieve this, we capture the “contribution”
of a single Metropolis-Hastings walk to the probability
of success of the events described in the Property.
It turns out that a Metropolis-Hastings walk of the
chosen length τ , when starting from a landmark, has
probability Ω(1/p) of reaching an arbitrary arc of the
graph. When starting from an arbitrary node from
V , such a walk has probability Ω(1/p) of reaching any
specific landmark. These claims are formulated in a
slightly more general way as the two lemmas below.
Their proofs take into account the low node-return rate
property from Lemma 2.3(ii), and the properties of a
walk starting from its stationary distribution π.

Lemma 3.1. Suppose that G is connected. For a
weighted walk RW (G1) starting from a node chosen ac-
cording to the uniform distribution π, the probability of
traversing (a fixed) non-loop arc eij before time t, where
∆2 ≤ t < 6n2, is:

Prπ[Teij < t] > 0.1
√
t/n.

Proof. Fix an arbitrary arc eij , with {i, j} ∈ E. We will
bound the sought probability from the inequality:

EπNeij (t) ≤ Prπ[Teij < t] EeijNeij (t) =⇒

(3.8) Prπ[Teij < t] ≥
EπNeij (t)
EeijNeij (t)

.

The expected number of traversals of eij for a walk of
even length starting from the stationary distribution on
V is given by equation (2.3).

To bound the expectation from the denominator
of (3.8), we note that by Lemma 2.3(ii), EiNi(t) <
5
√
t + 2∆, and that arc eij is chosen with probability

min
{

1
deg(i) ,

1
deg(j)

}
during each visit to i:

EiNeij (t) < (5
√
t+ 2∆) min

{
1

deg(i)
,

1

deg(j)

}
.

Considering a walk starting from a traversal of arc eij ,
we observe that after its traversal of eij the walk must
return to node i before traversing eij again:

EeijNeij (t) ≤ 1 + EjNeij (t) < 1 + EiNeij (t) <

< 1 + (5
√
t+ 2∆) min

{
1

deg(i)
,

1

deg(j)

}
≤

(3.9) ≤ (5
√
t+ 3∆) min

{
1

deg(i)
,

1

deg(j)

}
.

By combining inequalities (2.3), (3.8), (3.9), and taking
into account that t > ∆2, we obtain the claim:

Prπ[Teij < t] >
t

n(5
√
t+ 3∆)

>
t

8n
√
t
> 0.1

√
t

n
.

�

Lemma 3.2. Suppose that G is connected. Let j ∈ V
be picked according to the uniform distribution π. For a
weighted walk RW (G1) starting from some node i ∈ V ,
the probability of reaching j before time t, where ∆2 ≤
t < 6n2, is:

Pri[Tj < t] > 0.1
√
t/n.
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Proof. Pick a node j ∈ V according to the uniform
probability distribution π. We will bound the sought
probability from the inequality:

EiNj(t) ≤ Pri[Tj < t] EjNj(t) =⇒

(3.10) Pri[Tj < t] ≥ EiNj(t)
EjNj(t)

.

Taking into account (2.1) and condition (2.2), and not-
ing that j is chosen according to the uniform distribu-
tion π on V , we have:

(3.11) EiNj(t) = EjNi(t) = EπNi(t) =
t

n
.

The expectation from the denominator of (3.10) is
bounded by Lemma 2.3(ii), EjNj(t) < 5

√
t + 2∆. By

combining the above relations, and taking into account
that t > ∆2, we obtain:

Pri[Tj < t] >
t

n(5
√
t+ 2∆)

>
t

7n
√
t
> 0.1

√
t

n
.

�

After combining the above lemmas and applying
some elementary arguments about unions of indepen-
dent events, we finally obtain that Property 3.1 is sat-
isfied w.h.p. by landmarks uniformly chosen from V ,
provided that the considered connected component is
sufficiently large.

Lemma 3.3. If a connected component H ⊆ G has
nH ≥ np/6 nodes, then a (multi)set of p nodes, picked
with uniform probability from V , is a good set of land-
marks with respect to H with probability at least 1− 1

2n .

Proof. Fixing a connected component H ⊆ G with
nH ≥ np/6, we introduce the following notation for a
set of landmarks L:

• let LH = L ∩ V (H),

• let X(L) denote the event that |LH | ≥ 1
2p

nH
n ,

• let F1(L) be the random variable over L describing
the maximum, over all non-loops arcs e belonging
to H, of the probability that a set of p random
walks RW (G1) of length τ = n2

p each, with one
random walk originating from each landmark from
L, does not cover arc e.

• let F2(L) be the random variable over L describing
the maximum, over all nodes u ∈ V (H), of the
probability that a random walk RW (G1) of length
τ = n2

p, originating from u, does not hit any
landmark of L.

Suppose that L is a set of p nodes picked according to
the uniform distribution πp on V p. To prove the claim
of the Lemma, we need to show the following bound:

(3.12) PrL∼πp [F1 > n−1 ∧ F2 > n−1] <
1

2n
.

We observe that each landmark from L belongs to V (H)
with probability nH/n. Let LH = L ∩ V (H). A
w.h.p. lower bound on the size of LH follows from the
Chernoff bound applied to p Bernoulli trials with success
probability nH/n:

(3.13) PrL∼πp [X] ≥ 1− e− 1
8p

nH
n ≥ 1− e− 1

48p
np
n ≥

1− e−
γ
48 logn > 1− 1

4n
,

where we took into account that np ≥ γ np log n, and that
γ = 60 > 48. In the following, we only need to show
that, conditioned on the eventX(L) holding, L is a good
set of landmarks with probability 1− 1

4n . Note that all
the landmarks from LH are distributed uniformly at
random on V (H), also when conditioned on X(L).

To bound F1(L), fix a non-loop arc e of H as the
arc maximizing the failure probability in the definition
of F1(L). By applying Lemma 3.1 to graph H, the
probability that a walk RW (H1) of length τ = n2

p,
starting from the uniform distribution on V (H), does

not cover arc e, is at most 1− 0.1np
nH

. Thus, considering
that:

|LH | ≥
1

2
p
nH
n

=
nH · 3 log n

6np log n
≥ nH · 3 log n

0.1np
,

the probability F1,e(L) that no random walk starting
from a landmark hits arc e is bounded by:

EL∼πp
[
F1

∣∣ X] < (1− 0.1np
nH

) nH
0.1np

3 logn

< n−3.

Likewise, to bound F2(L), fix a node u ∈ V (H)
maximizing the probability that a walk RW (G1) of
length τ = n2

p, originating from u, does not hit any
landmark of L. By Lemma 3.2, the probability that
the considered walk of length τ does not cover a node
chosen according to the uniform distribution on V (H),

is at most 1 − 0.1
√
τ

nH
. Thus, taking into account that

|LH | > nH
0.1
√
τ

3 log n, the probability that the walk does

not hit any landmark can once again be bounded as less
than n−3:

EL∼πp
[
F2

∣∣ X] < n−3.

It follows that:

EL∼πp
[
F1 + F2

∣∣ X] < 2n−3,
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and by the Markov bound:

(3.14) PrL∼πp [F1 + F2 > n−1
∣∣ X] <

2

n2
<

1

4n
.

Now, inequalities (3.13) and (3.14) imply that inequal-
ity (3.12) holds, which completes the proof. �

The results of Broder et al. imply directly that if
a set of landmarks is good with respect to a connected
component H, then all landmarks in H can be identified
as belonging to the same connected component by
releasing a small number of walks from each landmark,
and applying Union-Find type operations on a disjoint-
set datastructure on the landmarks. Since the proof
does not rely on any other assumptions beyond the
properties of good landmarks, the result is directly
applicable to our considerations of the Metropolis-
Hastings walk.

Lemma 3.4. ([10]) Let L be a set of good landmarks
with respect to connected component H ⊆ G. Then,
a set of walks of length n2

p each, with β log n walks
originating from each of the landmarks, with probability
at least 1− 1

2n discovers that all landmarks located within
H belong to the same connected component.

In the above, the absolute constant β can be chosen as
β = 72.

Our algorithm for USTCON is now obtained as
follows. We pick a set of landmarks L, consisting of S ,
T , and p nodes picked uniformly at random from V ,
and then follow β log n Metropolis-Hastings walks from
each landmark, updating the disjoint-set data structure.
Finally, the algorithm decides whether S and T are
connected based on whether these two landmarks have
been identified as belonging to the same connected
component.

The algorithm never provides a false-positive an-
swer. The probability of identifying a pair of nodes
S and T from the same component H ⊆ G as not
being connected, can be bounded using the following
argument adapted from Broder et al. Let H be the
connected component of G containing node S . If
nH ≥ np/6, then by Lemma 3.3, the set L is a set
of good landmarks with respect to H with probability
at least 1 − 1

2n (note that adding nodes S and T to
a good set of landmarks cannot make this set of land-
marks a bad one). Conditioned on this, by Lemma 3.4,
we obtain a correct answer to USTCON with probabil-
ity 1 − 1

2n . Thus, the algorithm works correctly with
probability at least 1− 1

n . In the case when nH < np/6,
we consider only the walks originating from landmark
S . There are β log n such (independent) walks, each of

length n2
p > 36n2

H . It follows from Lemma 3, putting
i = S and j = T , that in this case, node T will be
reached with probability at least 1− 1

n . This completes
the proof of correctness.

Proposition 3.1. For all p ≥ 1, there is an algorithm
solving USTCON using space S = Õ(p) and time T =

Õ(n2
pp), where np = max{γ np log n,∆}, with probability

of one-sided error bounded by 1
n . �

For the case when p = Õ( n∆ ), we have obtained the

trade-off T = Õ(n
2

S ). We now show how to obtain the
claimed trade-off in the general case.

3.2 Removing the dependence on maximum
degree. We now remove the dependence of length of
the used walks on the value of ∆. We design a graph
G∗ = (V ∗, E∗) by subdividing the nodes of G, so that
each node from V turns into a path of nodes in G∗

with maximum degree bounded by D+ 2, where D ≥ 1
is an integer parameter, whose value is specified later.
Formally, graph G∗ is defined as follows:

• For each node v ∈ V , V ∗ contains ddeg(v)
D e copies

of v, labeled (v, 0), (v, 1), . . . , (v, ddeg(v)
D e − 1).

• Nodes (u, i) and (v, j), u 6= v, are connected by
an edge in E∗ if and only if {u, v} ∈ E, iD ≤
PORTv(u) < (i + 1)D, and jD ≤ PORTu(v) <
(j + 1)D.

• Nodes (u, i) and (u, i+1), for all 0 ≤ i < ddeg(v)
D e−

1, are connected by an edge of E∗, with special port
labels ‘prev′ and ‘next′ at its endpoints.

Let n∗ and ∆∗ be the number of nodes and the
maximum degree of G∗, respectively. We have ∆∗ =
D + 2, and the following bound on n∗ holds:

n∗ =
∑
v∈V
ddeg(v)

D
e < n+

∑
v∈V

deg(v)

D
= n+

2m

D
.

Solving USTCON on G between nodes S and T can
be reduced to solving USTCON on G∗ between nodes
(S , 0) and (T , 0), since the transformation of G into
G∗ does not affect connectivity. In order to apply the
algorithm for USTCON to G∗, rather than to G, we
introduce the following modifications:

• Landmarks need to be distributed following the
uniform distribution on V ∗. This can be achieved
by picking p integers uniformly at random from
the range [1, n∗], then enumerating all the nodes
of V ∗ in order, and associating the landmarks with
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the corresponding nodes from V ∗. This operation
can be performed in O(n∗ + p log n∗) time, which

is always Õ(m).

• The performed walks need to follow RW (G∗1),
rather than RW (G1). A simulation of one step of

the walk RW (G∗1) can be performed in Õ(1) time.

• The duration of each of the performed walks is
given as n∗2p , where:

n∗p = max

{
γ
n∗

p
log n∗,∆∗

}
≤ max

{
γ
n+ 2m/D

p
· 2 log n,D + 2

}
(3.15)

It follows that the time complexity of the entire algo-
rithm is bounded by the Õ(m) complexity of landmark

distribution and the Õ(n∗2p p) complexity of simulating
the Metropolis-Hastings walks on G∗. Substituting the
expression from (3.15) for n∗p, we have:

T = Õ(m+ n∗2p p) = Õ

(
m+

n2

p
+

m2

D2p
+D2p

)
Now, putting D = d

√
m/pe gives D2p = Θ(m), and we

obtain the required time bound T = Õ(m+ n2

p + m2

m +

m) = Õ(max{n
2

p ,m}). Since the proposed solution can

be implemented with a space bound of S = Õ(p), we
have proven the main theorem of the paper.

Theorem 3.1. For all S ≥ c log n, where c > 0 is some
model-dependent constant, there is an algorithm solving

USTCON using space S and time T = Õ(max{n
2

S ,m}),
with probability of one-sided error bounded by 1

n . �

4 Remarks

4.1 Tightness of the trade-off. For a space bound

S ≥ n2

m , we cannot hope for an algorithm with smaller

run-time than T = Õ(m), achieved in Theorem 3.1. In
fact, the lower bound of T = Ω(m) holds for the RAM
model under most reasonable representations of G in
the memory.

For smaller values of S, the optimality of the
achieved trade-off S · T = Õ(n2) is open. For the
extremal case of S = O(log n), the results of [6] imply

that T = Ω̃(n2) for any deterministic algorithm using a
jumping automaton (JAG) with at most one movable
pebble. There is also little hope of improving the
time complexity using randomized algorithms similar to
the Metropolis-Hastings walk, since Nonaka et al. [20]

showed that any walk, having a stationary distribution
which is (almost) uniform on the nodes of the graph,
has Ω(n2) cover time for some graphs.

Even more strongly, one can ask whether there ex-
ists an algorithm for USTCON which runs in Õ(1) space

and Õ(m) time. This appears unlikely in view of the
negative result of Edmonds [13], who showed that a ran-

domized JAG using Õ(1) space and o(log n/ log log n)
pebbles requires in expectation n1+Ω(1)/ log logn time to
explore certain 3-regular graphs.

4.2 Fine-tuning the Metropolis-Hastings walk.
In view of Lemma 2.1, the Metropolis-Hastings walk
visits all the nodes of a graph within Õ(n2) steps.
This is an improvement with respect to the bound
of O(nm) on the cover time of an unbiased random
walk. Nevertheless, the Metropolis-Hastings walk may
perform worse than the random walk for specific graph
classes. A generic example of such a graph, called the
glitter star, was defined by [20] as a tree on n = 2l + 1
nodes, with one central node of degree l connected to
l nodes of degree 2, which are in turn connected to l
leaves. On the glitter star, the cover time of the random
walk is Θ(n log n), and the cover time of the Metropolis-
Hastings walk is Θ(n2).

Below we propose a walk RW (Gf ) with a different
potential function which combines some of the advan-
tages of the random walk and the Metropolis-Hastings
walk.

Proposition 4.1. For a graph G, let the node potential

function f : V → R+ be given as f(u) = deg(u)
d + 1,

where d = 2m
n is the average degree of the graph. Then,

for any pair of nodes u, v ∈ V , the walk RW (Gf )
achieves a commute time of:

ComGf (u, v) = O(min{ComG(u, v), ComG1
(u, v)}),

where ComG(u, v) and ComG1
(u, v) denote the com-

mute times for the random walk on G and the
Metropolis-Hastings walk, respectively. A step of the
walk RW (Gf ) can be simulated using Õ(1) space and
time. �

The above Proposition implies that for any graph,

the walk RW (Gf ) with f(u) = deg(u)
d + 1, is asymp-

totically not slower than the unbiased random walk in
terms of parameters such as maximum hitting time and
(arbitrarily weighted) average hitting time. At the same

time, this walk preserves the upper bound of Õ(n2) on
the cover time in the graph, making it an interesting
alternative to the unbiased random walk in practical
applications, e.g., for different random graph models.
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We remark that there exist different ways of com-
bining the unbiased random walk and the Metropolis-
Hastings walk. For example, one may consider an au-
tomaton which iteratively performs a phase of the walk
RW (G), followed by a phase of the walk RW (G1) of the
same length, doubling the lengths of both walks in each
subsequent iteration. Such a walk visits all the nodes of
the graph in expected time asymptotically equal to the
cover time of the faster of the two walks.
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