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Let G be a graph, either undirected or directed 
consisting of a vertex set V and an edge set E. We 
shall use n to denote the number of vertices and m to 
denote the number of edges of G. Suppose each edge 
e E E has an associated real-valued edge cost c(e). A 
number of network optimization problems call for 
determining a subgraph of such a graph that is mini­
mum with respect to some function of the edge costs. 
For example, the minimum spanning tree problem is 
that of determining, for a connected, undirected 
graph G, a spanning tree of minimum total edge cost. 
The shortest path tree problem is that of computing, 
for a given directed graph G and a given vertex r, a 
spanning tree rooted at r that contains a minimum­
cost path from r to every other vertex. In such optimi­
zation problems it may be use"rul to measure the 
robustness of the solution. That is, given a minimum 
subgraph, we would like to know by how much we 
can perturb each edge cost individually without 
changing the minimality of the subgraph. We call this 
the sensitivity analysis problem. 

Shier and Witzgall [3] have proposed several algo­
rithms for sensitivity analysis of shortest path trees. 
Gusfield [2] has shown that two of their algorithms 
can be implemented to run in Oem log n) time and 
Oem) space, and has noted that his techniques also 
apply to sensitivity analysis of minimum spanning 
trees. In this paper we show how to perform sensitiv­
ity analysis of minimum spanning trees and shortest 
path trees in O(ma:(m, n» time and Oem) space, where 
a is a functional inverse of Ackermann's function [4] 
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defined as follows. For integers i,j ~ 1 we define 
A(i,j) by 

A(1,j)=2J forj~l; 

A(i,l) =A{i-l,2) fori~2; 

A(i,j) =A(i-l,A(i,j-l» fori,j~2. 

For integers m, n such that m ~ n - 1 ;;a. 0 we define 
a(m, n) by 

a:(m, n) = min {i ~ 1 I A(i, l (m + 1)/n J) > logln}. 

The algorithm uses path compression on balanced 
trees [6] and extends the algorithms of [6] for veri­
fying and updating minimum spanning trees. 

Let us begin by considering sensitivity analysis of 
minimum spanning trees. Suppose G is a connected, 
undirected graph and T is a spanning tree of G. The 
following lemma is well-known: 

Lemma 1. T is a minimum spanning tree of G if and 
only if, for each non-tree edge f, the cost of f is at 
least as large as the cost of any edge on the (unique) 
simple path in T joining the ends of f. (In what fol­
lows we shall denote the path in T joining the ends of 
fby T(O.) 

Suppose T is a minimum spanning tree of G. We 
wish to determine, for each edge e of G, by how much 
the cost of e can be changed without affecting the 
minimality of T. The following corollary of Lemma 1 
provides the answer to this question. 
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Cor.oUary 1. If f is a non-tree edge, T remains minimal 
until the cost of f is decreased by more than c(t) -
~(e), where e is an edge of maximum cost on T(t). If e 
1S a tree edge, T remains minimal until the cost of e is 
increased by more than c(t) - c(e), where fis a non­
tree edge of minimum cost such that e lies on T(t). 

We can thus solve the sensitivity analysis problem 
for T by computing the increments and decrements 
Specified in Corollary 1. To do this efficiently, we 
compute the increments and decrements for all the 
edges simultaneously using an auxiliary graph we call 
a transmuter. . 

A transmuter is a directed acyclic graph 0 that 
represents the set of fundamental cycles of G with 
respect to T, or more precisely the set of paths 
{T(t) I f is a non-tree edge}. We shall call the vertices 
of 0 nodes to distinguish them from the vertices of 
G. 0 contains one Source (node of in-degree zero) 

(a) 

(b) 

see) representing each tree edge e, one sink (node of 
out-degree zero) t(t) representing each non-tree edge 
f, and an arbitrary number of additional nodes. The 
fundamental property of a transmuter is that there is 
a path from a given source see) to a given sink t(t) if 
and only if edge e is on tree path T(t). See Fig. 1. 

TaIjan [6, section 7] describes a way to compute 
a transmuter containing O(mOi(m, n» nodes and edges 
in O(mOi(m, n» time. Given a transmuter, we can 
solve the sensitivity analysis problem for T in time 
linear in the size of the transmu ter , as follows: 

Step 1 (compute decrements for non-tree edges). 
Label each node of the transmuter with a real number 
by processing the nodes in topological order. To pro­
cess a source s(e),label it with c(e). To process a node 
v that is not a source,label it with the maximum of 
the labels on its (immediate) predecessors. When the 
labeling is complete, each sink t(t) is labeled with the 
maximum cost of an edge on the tree path T(t). Thus 

Fig. 1. A transmuter for a connected, undirected graph with spanning tree. (a) Graph. Tree edges are solid, non-tree edges are 
dotted. (b) Transmuter. 
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the decrement for f is its cost minus its label. 
Step 2 (compute increments for tree edges). Label 

each node of the transmuter with another real number 
by processing the nodes in reverse topological order. 
To process a sink t(t),label it with c(t). To process a 
node v that is not a sink, label it with the minimum of 
the labels of its (immediate) successors. When the 
labeling is complete, each source see) is labeled with 
the minimum cost of an edge f such that e is on T(t). 
Thus the increment for e is its label minus its cost. 

This algorithm requires not only O(ma{m, n» time 
but also O(ma(m, n» space to represent the trans­
muter. We can reduce the space to Oem) by processing 
the non-tree edges in groups. Let m' = m - n + 1 be 
the number of non-tree edges. Divide the non-tree 
edges into groups of size Oem' /a(m, n» and apply the 
above algorithm to each group (that is, to the sub· 
graph consisting of the entire tree and the non·tree 
edges in the group). Each non·tree edge will receive its 
correct decrement, and each tree edge will receive 
O(a(m, n» increments, of which the minimum is the 
correct one. To process one group of non· tree edges 
takes 

o(n+ a(:,'n) a(max{n,o a(:,'n)},n ))=o(m) 

space and time by an extension [7] of the upper 
bound analysiS in [4,6]. It follows that the total time 
to compute increments is O{ma{m, n», and the total 
space is Oem). 

Transmute!s can also be used to do sensitivity anal· 
ySis of shortest path trees in O{ma{m, n» time and 
Oem) space. Let G be a directed graph and let T be a 
spanning tree of G rooted at a vertex r. The following 
lemma is well·known: 

Lemma 2. For each vertex v in G,let dey) be the total 
cost of the edges on the (unique) path from r to v in T. 
Then T is a shortest path tree if and only if c{t) ;;. 
dew) - dey) for every non·tree edge f = (v, w) in G. 

Lemma 2 implies the following corollary, which 
Shier and Witzgall used to do sensitivity analysiS of 
shortest path trees. 

Corollary 2. Let T be a shortest path tree. If f = (v, w) 
is a non·tree edge, T remains a shortest path tree until 
the cost of f is decreased by more than c{O + dey) -
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dew). If e = (x, y) is a tree edge, T remains a shortest 
path tree until the cost of e is increased by more than 
c{t) + dey) - d(w), where f = (v, w) is a non-tree edge, 
such that w but not v is a descendant of y in T, which 
minimizes c(t) + dey) - dew). 

To analyze the sensitivity of a shortest path tree, 
we compute dey) for every vertex in the tree. This 
takes O{n) time. Then we compute A(t) = c(t) + d{v)­
d( w) for every non·tree edge f = (v, w). This takes 
Oem) time and gives us the decrements for the non. 
tree edges. 

To compute the increments for the tree edges, we 
use a transmuter as follows: For every non·tree edge 
f = (v, w), we compute the nearest common ancestor 
nca(v, w) ofv and w in T. This takes O(ma(m, n» 
time [1,6]. We define the auxiliary edge for a non.tree 
edge f = (v, w) to be r = (nca(v, w), w). We construct 
a transmuter (with respect to the tree T) for the aux· 
iliary graph G' = (y, E'), where E' = {e I e is a tree 
edge} u {r 1 fis a non·tree edge}. Then we perform a 
backward labeling of the nodes of the transmuter (as 
in Step 2 of the sensitivity analYSis method for mini. 
mum spanning trees), using A(t) as the label for sink 
t(f1. When the labeling is complete, each source is 
labeled by its increments. 

This method requires a total of O(ma{m, n» time 
and space. As in the case of minimum spanning trees, 
the space bound can be lowered to Oem). 

Transmuters have uses other than sensitivity anal· 
ysis; they were originally developed for updating mini­
mum spanning trees [6, section 7]. A lower bound 
result of Tarjan [5] implies that in the worst case a 
transmuter for an n·vertex, m-edge graph must have 
size n(ma{m, n»; thus devising a faster algorithm for 
sensitivity analysis seems to require a new idea. 
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