
Volume 14, number 1 INFORMATION PROCESSING LETTERS 27 March 1982

SENSITIVITY ANALYSIS OF MINIMUM SPANNING TREES AND SHORTEST PATH TREES

Robert Endre TARJAN
Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

Received 20 October 1981

Sensitivity analysis, shortest path, minimum spanning tree, path compression, graph algorithm, network optimization,
transmuter

Let G be a graph, either undirected or directed
consisting of a vertex set V and an edge set E. We
shall use n to denote the number of vertices and m to
denote the number of edges of G. Suppose each edge
e E E has an associated real-valued edge cost c(e). A
number of network optimization problems call for
determining a subgraph of such a graph that is mini­
mum with respect to some function of the edge costs.
For example, the minimum spanning tree problem is
that of determining, for a connected, undirected
graph G, a spanning tree of minimum total edge cost.
The shortest path tree problem is that of computing,
for a given directed graph G and a given vertex r, a
spanning tree rooted at r that contains a minimum­
cost path from r to every other vertex. In such optimi­
zation problems it may be use"rul to measure the
robustness of the solution. That is, given a minimum
subgraph, we would like to know by how much we
can perturb each edge cost individually without
changing the minimality of the subgraph. We call this
the sensitivity analysis problem.

Shier and Witzgall [3] have proposed several algo­
rithms for sensitivity analysis of shortest path trees.
Gusfield [2] has shown that two of their algorithms
can be implemented to run in Oem log n) time and
Oem) space, and has noted that his techniques also
apply to sensitivity analysis of minimum spanning
trees. In this paper we show how to perform sensitiv­
ity analysis of minimum spanning trees and shortest
path trees in O(ma:(m, n» time and Oem) space, where
a is a functional inverse of Ackermann's function [4]

30

defined as follows. For integers i,j ~ 1 we define
A(i,j) by

A(1,j)=2J forj~l;

A(i,l) =A{i-l,2) fori~2;

A(i,j) =A(i-l,A(i,j-l» fori,j~2.

For integers m, n such that m ~ n - 1 ;;a. 0 we define
a(m, n) by

a:(m, n) = min {i ~ 1 I A(i, l (m + 1)/n J) > logln}.

The algorithm uses path compression on balanced
trees [6] and extends the algorithms of [6] for veri­
fying and updating minimum spanning trees.

Let us begin by considering sensitivity analysis of
minimum spanning trees. Suppose G is a connected,
undirected graph and T is a spanning tree of G. The
following lemma is well-known:

Lemma 1. T is a minimum spanning tree of G if and
only if, for each non-tree edge f, the cost of f is at
least as large as the cost of any edge on the (unique)
simple path in T joining the ends of f. (In what fol­
lows we shall denote the path in T joining the ends of
fby T(O.)

Suppose T is a minimum spanning tree of G. We
wish to determine, for each edge e of G, by how much
the cost of e can be changed without affecting the
minimality of T. The following corollary of Lemma 1
provides the answer to this question.

0020-0190/82/0000-0000/$02.75 © 1982 North-Holland

Volume 14, number 1 INFORMATION PROCESSING LETTERS 27 March 1982

Cor.oUary 1. If f is a non-tree edge, T remains minimal
until the cost of f is decreased by more than c(t) -
~(e), where e is an edge of maximum cost on T(t). If e
1S a tree edge, T remains minimal until the cost of e is
increased by more than c(t) - c(e), where fis a non­
tree edge of minimum cost such that e lies on T(t).

We can thus solve the sensitivity analysis problem
for T by computing the increments and decrements
Specified in Corollary 1. To do this efficiently, we
compute the increments and decrements for all the
edges simultaneously using an auxiliary graph we call
a transmuter. .

A transmuter is a directed acyclic graph 0 that
represents the set of fundamental cycles of G with
respect to T, or more precisely the set of paths
{T(t) I f is a non-tree edge}. We shall call the vertices
of 0 nodes to distinguish them from the vertices of
G. 0 contains one Source (node of in-degree zero)

(a)

(b)

see) representing each tree edge e, one sink (node of
out-degree zero) t(t) representing each non-tree edge
f, and an arbitrary number of additional nodes. The
fundamental property of a transmuter is that there is
a path from a given source see) to a given sink t(t) if
and only if edge e is on tree path T(t). See Fig. 1.

TaIjan [6, section 7] describes a way to compute
a transmuter containing O(mOi(m, n» nodes and edges
in O(mOi(m, n» time. Given a transmuter, we can
solve the sensitivity analysis problem for T in time
linear in the size of the transmu ter , as follows:

Step 1 (compute decrements for non-tree edges).
Label each node of the transmuter with a real number
by processing the nodes in topological order. To pro­
cess a source s(e),label it with c(e). To process a node
v that is not a source,label it with the maximum of
the labels on its (immediate) predecessors. When the
labeling is complete, each sink t(t) is labeled with the
maximum cost of an edge on the tree path T(t). Thus

Fig. 1. A transmuter for a connected, undirected graph with spanning tree. (a) Graph. Tree edges are solid, non-tree edges are
dotted. (b) Transmuter.

31

Volume 14, number 1 INFORMATION PROCESSING LETTERS 27 March 1982

the decrement for f is its cost minus its label.
Step 2 (compute increments for tree edges). Label

each node of the transmuter with another real number
by processing the nodes in reverse topological order.
To process a sink t(t),label it with c(t). To process a
node v that is not a sink, label it with the minimum of
the labels of its (immediate) successors. When the
labeling is complete, each source see) is labeled with
the minimum cost of an edge f such that e is on T(t).
Thus the increment for e is its label minus its cost.

This algorithm requires not only O(ma{m, n» time
but also O(ma(m, n» space to represent the trans­
muter. We can reduce the space to Oem) by processing
the non-tree edges in groups. Let m' = m - n + 1 be
the number of non-tree edges. Divide the non-tree
edges into groups of size Oem' /a(m, n» and apply the
above algorithm to each group (that is, to the sub·
graph consisting of the entire tree and the non·tree
edges in the group). Each non·tree edge will receive its
correct decrement, and each tree edge will receive
O(a(m, n» increments, of which the minimum is the
correct one. To process one group of non· tree edges
takes

o(n+ a(:,'n) a(max{n,o a(:,'n)},n))=o(m)

space and time by an extension [7] of the upper
bound analysiS in [4,6]. It follows that the total time
to compute increments is O{ma{m, n», and the total
space is Oem).

Transmute!s can also be used to do sensitivity anal·
ySis of shortest path trees in O{ma{m, n» time and
Oem) space. Let G be a directed graph and let T be a
spanning tree of G rooted at a vertex r. The following
lemma is well·known:

Lemma 2. For each vertex v in G,let dey) be the total
cost of the edges on the (unique) path from r to v in T.
Then T is a shortest path tree if and only if c{t) ;;.
dew) - dey) for every non·tree edge f = (v, w) in G.

Lemma 2 implies the following corollary, which
Shier and Witzgall used to do sensitivity analysiS of
shortest path trees.

Corollary 2. Let T be a shortest path tree. If f = (v, w)
is a non·tree edge, T remains a shortest path tree until
the cost of f is decreased by more than c{O + dey) -

32

dew). If e = (x, y) is a tree edge, T remains a shortest
path tree until the cost of e is increased by more than
c{t) + dey) - d(w), where f = (v, w) is a non-tree edge,
such that w but not v is a descendant of y in T, which
minimizes c(t) + dey) - dew).

To analyze the sensitivity of a shortest path tree,
we compute dey) for every vertex in the tree. This
takes O{n) time. Then we compute A(t) = c(t) + d{v)­
d(w) for every non·tree edge f = (v, w). This takes
Oem) time and gives us the decrements for the non.
tree edges.

To compute the increments for the tree edges, we
use a transmuter as follows: For every non·tree edge
f = (v, w), we compute the nearest common ancestor
nca(v, w) ofv and w in T. This takes O(ma(m, n»
time [1,6]. We define the auxiliary edge for a non.tree
edge f = (v, w) to be r = (nca(v, w), w). We construct
a transmuter (with respect to the tree T) for the aux·
iliary graph G' = (y, E'), where E' = {e I e is a tree
edge} u {r 1 fis a non·tree edge}. Then we perform a
backward labeling of the nodes of the transmuter (as
in Step 2 of the sensitivity analYSis method for mini.
mum spanning trees), using A(t) as the label for sink
t(f1. When the labeling is complete, each source is
labeled by its increments.

This method requires a total of O(ma{m, n» time
and space. As in the case of minimum spanning trees,
the space bound can be lowered to Oem).

Transmuters have uses other than sensitivity anal·
ysis; they were originally developed for updating mini­
mum spanning trees [6, section 7]. A lower bound
result of Tarjan [5] implies that in the worst case a
transmuter for an n·vertex, m-edge graph must have
size n(ma{m, n»; thus devising a faster algorithm for
sensitivity analysis seems to require a new idea.

References

[1) A.V. Aho, J.E. Hopcroft and J.D. Ullman, On computing
least common ancestors in trees, SIAM J. Comput. 5
(1976) 115-132.

(2) D. Gusfleld, A note on arc tolerances in sparse shortest
path and network flow problems, unpublished manuscript
(1981).

[3] D.R. 'Shier and G. Witzgall, Arc tolerances In shortest path
and network flow problems, Networks 10 (1980) 277-
291.

Volume 14, number 1 INFORMATION PROCESSING LETTERS 27 March 1982

[4) R.E. Tarjan, Efficiency of a good but not linear set union
algorithm, J. ACM 22 (1975) 215-225.

[S) R.E. Tarjan, Complexity of monotone networks of com­
puting conjunctions, Annals Discrete Math. 2 (1978) 121-
133.

(6) R.E. Tarjan, Applications of path compression on balanced
trees, J. ACM 26 (1979) 690-715.

(7) R.E. Tarjan, Worst-case analysis of set union algorithms,
to appear.

33

