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Abstract. We consider additive spanners of unweighted undirected
graphs. Let G be a graph and H a subgraph of G. The most naïve
way to construct an additive k-spanner of G is the following: As long
as H is not an additive k-spanner repeat: Find a pair �u, v� � H that
violates the spanner-condition and a shortest path from u to v in G. Add
the edges of this path to H .

We show that, with a very simple initial graph H , this naïve method
gives additive 6- and 2-spanners of sizes matching the best known upper
bounds. For additive 2-spanners we start with H � � and end with
O�n3�2� edges in the spanner. For additive 6-spanners we start with H
containing �n1�3� arbitrary edges incident to each node and end with a
spanner of size O�n4�3�.

1 Introduction

Additive spanners are subgraphs that preserve the distances in the graph up
to an additive positive constant. Given an unweighted undirected graph G, a
subgraph H is an additive k-spanner if for every pair of nodes u, v it is true that

dG�u, v� � dH�u, v� � dG�u, v� � k

In this paper we only consider purely additive spanners, which are k-spanners
where k � O�1�. Throughout this paper every graph will be unweighted and
undirected.

Many people have considered a variant of this problem, namely multiplicative
spanners and even mixes between additive and multiplicative spanners [1,2,3].
The problem of finding a k-spanner of smallest size has received a lot of atten-
tion. Most notably, given a graph with n nodes Dor et al. [4] prove that it has a
2-spanner of size O�n3�2�, Baswana et al. [5] prove that it has a 6-spanner of size
O�n4�3�, and Chechik [6] proves that it has a 4-spanner of size O�n7�5 log1�5 n�.
Woodrufff [7] shows that for every constant k there exist graphs with n nodes
such that every �2k � 1�-spanner must have at least Ω�n1�1�k� edges. This im-
plies that the construction of 2-spanners are optimal. Whether there exists an
algorithm for constructing O�1�-spanners with O�n1�ε� edges for some ε � 1�3
is unknown and is an important open problem.
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Let G be a graph and H a subgraph of G. Consider the following algorithm: As
long as there exists a pair of nodes u, v such that dH�u, v� 	 dG�u, v�� k, find a
shortest path from u to v in G and add the edges on the path to H . This process
will be referred to as k-spanner-completion. After k-spanner-completion, H
will be a k-spanner of G. Thus, given a graph G, a general way to construct a
k-spanner for G is the following: Firstly, find a simple subgraph of G. Secondly
use k-spanner-completion on this subgraph. The main contribution of this paper
is:

Theorem 1. Let G be a graph with n nodes and H the subgraph containing
all nodes but no edges of G. For each node add

�
n1�3

�
edges adjacent to that

node to H (or, if the degree is less, add all edges incident to that node). After
6-spanner-completion H will have at most O�n4�3� edges.

It is well-known that a graph with n nodes has a 6-spanner of size O�n4�3�
[5]. The techniques employed in our proof of correctness are similar to those
in [5]. The creation of the initial graph H corresponds to the clustering in [5]
and the 6-spanner-completion corresponds to their path-buying algorithm. For
completeness we show that the same method gives a 2-spanner of size O�n3�2�.
This fact is already known due to [4] and is matched by a lower bound from [7].

Theorem 2. Let G be a graph with n nodes and H the subgraph where all edges
are removed. Upon 2-spanner-completion H has at most O�n3�2� edges.

2 Creating a 6-Spanner

The algorithm for creating a 6-spanner was described in the abstract and the
introduction.

For a given graph G, a 6-spanner of G can be created by strating with some
subgraph H of G and applying 6-spanner-completion to H . Theorem 1 states
that for a suitable starting choice of H we get a spanner of size O�n4�3�. The
purpose of this section is to show that the 6-spanner created has no more than
O�n4�3� edges. This will imply that the construction (in terms of the size of the
6-spanner) matches the best known upper bound [5].

Proof (of Theorem 1). Inserting (at most)
�
n1�3

�
edges per node will only add

n
�
n1�3

�
� O�n4�3� edges to H . Therefore it is only necessary to prove that

6-spanner-completion adds no more than O�n4�3� edges.
Let v�H� and c�H� be defined by:

v�H� �
�

u,v�V �G�

max 
0, dG�u, v� � dH�u, v� � 5� , c�H� � #E�H�

Say that a shortest path, p, from u to v is added to H , and let H0 be the
subgraph before the edges are added. Let the path consist of the nodes:

u � w0, w1, . . . , wr � v, r � N



Additive Spanners: A Simple Construction 279

Let u� � wi be the node wi with the smallest i such that degH0
�wi� 


�
n1�3

�
.

Likewise let v� � wj be the node wj the largest j such that degH0
�wj� 


�
n1�3

�
.

Remember that if degH0
�wi� �

�
n1�3

�
then all the edges adjacent to wi are

already in H0. This implies that dH0 �u
�, v�� 	 dG�u

�, v�� � 6 since dH0�u, v� 	
dG�u, v� � 6.

Say that t new edges are added to H . Then there must be at least t nodes on
p with degree 	 n1�3. Since every node can be adjacent to no more than 3 nodes
on p (since it is a shortest path) there must be Ω�n1�3t� nodes adjacent to p in
H . Let z and w be neighbours to u� and v� in H respectively and let r be any
node adjacent to p in H . Let s be a node on p such that r and s are adjacent in
H . See Figure 1 for an illustration.

u u' s v' v

z r w

Fig. 1. The dashed line denotes the shortest path from u to v. The solid lines denote
edges.

By the triangle inequality we see that:

dH�z, r� � dH�r, w� � dG�u
�, v�� � 4

But on the other hand:

dH0�z, r� � dH0�r, w� 
 dH0�z, w� 
 dH0�u
�, v�� � 2 	 dG�u

�, v�� � 4

Combining these two inequalities we obtain dH0�z, r� 	 dH�z, r� or dH0�r, w� 	
dH�r, w�. And from the triangle inequality dG�z, r��5 	 dH �z, r� and dG�r, w��
5 	 dH�r, w�. Since u� and v� have at least n1�3 neighbours and there are Ω�n1�3t�
nodes in H adjacent to p, the definition of v�H� implies that:

v�H� � v�H0� 
 Ω�t�n1�3�2�

And since c�H� � c�H0� � t:

v�H� � v�H0�

c�H� � c�H0�

 Ω�n2�3�

Since v�H� � O�n2� this implies that c�H� increases with no more than
O�n2�n2�3� � O�n4�3� in total when all shortest paths are inserted. Hence
c�H� � O�n4�3� when the 6-spanner-completion is finished which yields the
conclusion. ��
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3 Creating a 2-Spanner

For completeness we show that 2-spanner-completion gives spanners with O�n3�2�
edges. This matches the upper bound from [4] and the lower bound from [7].

Proof (of Theorem 2). Let G be a graph with n nodes. Whenever H is a spanner
of G, define v�H� and c�H� as:

v�H� �
�

u,v�V �G�

max 
0, dG�u, v� � dH�u, v� � 3� , c�H� �
�

v�V �G�

�degH�v��
2

It is easy to see that 0 � v�H� � 3n2 and by Cauchy-Schwartz’s inequality�
c�H� � n 
 2#E�H�. The goal will be to prove that when the algorithm termi-

nates c�H� � O�n2�, since this implies that #E�H� � O�n3�2�. This is done by
proving that in each step of the algorithm c�H��12v�H� will not increase. Since
v�H� � O�n2� this means that c�H� � O�n2� which ends the proof. Therefore it
is sufficient to check that c�H� � 12v�H� never increases.

Consider a step where new edges are added to H on a shortest path from u to
v of length t. Let H0 be the subgraph before the edges are added. Assume that
u, v violates the 2-spanner condition in H0, i.e. dH0�u, v� 	 dG�u, v�� 2. Let the
shortest path consist of the nodes:

u � w0, w1, . . . , wt�1, wt � v

It is obvious that:

c�H� � c�H0� �
t�

i	0

�degH�wi��
2 � �degH�wi� � 2�2 � 4

t�

i	0

degH�wi�

Every node cannot be adjacent to more than 3 nodes on the shortest path, since
otherwise it would not be a shortest path. Using this insight we can bound the
number of nodes which in H are adjacent to or on the shortest path from below
by:

1

3

t�

i	0

degH�wi�

Now let z be a node in H adjacent or on to the shortest path. Obviously:

dH �u, z� � dH�z, v� � dG�u, v� � 2

Furthermore dH0�u, z� � dH0�z, v� 	 dG�u, v� � 2 since otherwise there would
exist a path from u to v in H0 of length � dG�u, v� � 2. Hence:

dH�u, z� � dH �z, v� � dH0�u, z� � dH0�z, v�

Now let z be a node on the shortest path which is adjacent to wi in H (every
node on the path will also be adjacent in H to such a node). Then by the triangle
inequality:

dH�u, z� � dH�u,wi� � dH�wi, z� � dG�u,wi� � 1

� dG�u, z� � dG�z, wi� � 1 � dG�u, z� � 2
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And likewise dH�z, v� � dG�z, v� � 2. Combining these two observations yields:
�

w�V

max 
0, dG�z, w� � dH�z, w� � 3� �
�

w�V

max 
0, dG�z, w� � dH0�z, w� � 3�

Since this holds for every node in H adjacent to or on the shortest path this
means that:

v�H� � v�H0� 

1

3

t�

i	0

degH�wi�

Combining this with the bound on c�H� � c�H0� gives:

�c�H� � 12v�H�� � �c�H0� � 12v�H0�� � 0

which finishes the proof. ��
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