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Abstract
High-performance concurrent priority queues are essential for ap-
plications such as task scheduling and discrete event simulation.
Unfortunately, even the best performing implementations do not
scale past a number of threads in the single digits. This is because
of the sequential bottleneck in accessing the elements at the head
of the queue in order to perform a DeleteMin operation.

In this paper, we present the SprayList, a scalable prior-
ity queue with relaxed ordering semantics. Starting from a non-
blocking SkipList, the main innovation behind our design is that
the DeleteMin operations avoid a sequential bottleneck by “spray-
ing” themselves onto the head of the SkipList list in a coordinated
fashion. The spraying is implemented using a carefully designed
random walk, so that DeleteMin returns an element among the
first O(p log3 p) in the list, with high probability, where p is the
number of threads. We prove that the running time of a DeleteMin
operation is O(log3 p), with high probability, independent of the
size of the list.

Our experiments show that the relaxed semantics allow the data
structure to scale for high thread counts, comparable to a classic
unordered SkipList. Furthermore, we observe that, for reasonably
parallel workloads, the scalability benefits of relaxation consider-
ably outweigh the additional work due to out-of-order execution.
Categories and Subject Descriptors E.1 [Data Structures]: Dis-
tributed Data Structures
Keywords Concurrent data structures, parallel algorithms

1. Introduction
The necessity for increasingly efficient, scalable concurrent data
structures is one of the main software trends of the past decade.
Efficient concurrent implementations are known for several fun-
damental data structures, such as hash tables [18], SkipLists [15],
pools [6], and trees [7]. On the other hand, several impossibility
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results [3, 14] suggest that not all data structures can have efficient
concurrent implementations, due to an inherent sequentiality which
follows from their specification.

A classic example of such a data structure is the priority queue,
which is widely used in applications such as scheduling and event
simulation, e.g. [21]. In its simplest form, a priority queue stores a
set of key-value pairs, and supports two operations: Insert, which
adds a given pair to the data structure and DeleteMin, which re-
turns the key-value pair with the smallest key currently present.
Sequential priority queues are well understood, and classically im-
plemented using a heap [20]. Unfortunately, heap-based concurrent
priority queues suffer from both memory contention and sequential
bottlenecks, not only when attempting to delete the single minimal
key element at the root of the heap, but also when percolating small
inserted elements up the heap.

SkipList-based implementations were proposed [21, 22, 28]
in order to reduce these overheads. SkipLists are randomized
list-based data structures which classically support Insert and
Delete operations [24]. A SkipList is composed of several linked
lists organized in levels, each containing a random subset of the
elements in the list below it. SkipLists are desirable because they
allow priority queue insertions and removals without the costly
percolation up a heap or the rebalancing of a search tree. Highly
concurrent SkipList-based priority queues have been studied exten-
sively and have relatively simple implementations [15, 17, 21, 25].
Unfortunately, an exact concurrent SkipList-based priority queue,
that is, one that maintains a linearizable [17] (or even quiescently-
consistent [17]) order on DeleteMin operations, must still remove
the minimal element from the leftmost node in the SkipList. Thus,
all threads must repeatedly compete to get this minimal node, re-
sulting in a contention bottleneck and limiting scalability [21].

An interesting alternative has been to relax the strong ordering
constraints on the output for better scalability. An early instance of
this direction is the seminal work by Karp and Zhang [19], followed
by several other interesting proposals, e.g. [8, 11, 26], designed for
the (synchronous) PRAM model. Recently, there has been a surge
of interest in relaxed concurrent data structures, both on the theo-
retical side, e.g. [16] and from practitioners, e.g. [23]. In particular,
Wimmer et al. [29] and Mendes et al. [9], along with concurrent
work [30] explore trade-offs between ordering and scalability for
asynchronous priority queues. However, despite all this effort, it is
currently not clear whether it is possible to design a relaxed priority
queue which provides both ordering guarantees under asynchrony,
and scalability under high contention for realistic workloads.

In this paper, we take a step in this direction by introducing
the SprayList, a scalable relaxed priority queue implementation
based on a SkipList. The SprayList provides probabilistic guar-
antees on the priority of returned elements, and on the running time
of operations. At the same time, it shows fully scalable throughput
for up to 80 concurrent threads under high-contention workloads.

Instead of threads clashing on the first element, we allow threads
to “skip ahead” in the list, so that concurrent operations attempt to



remove distinct, uncontended elements. The obvious issue with this
approach is that one cannot allow threads to skip ahead too far, or
many high priority (minimal key) elements will not be removed.
Our solution is to have the DeleteMin operations traverse the
SkipList, not along the list, but via a tightly controlled random walk
from its head. We call this operation a spray.

Roughly, at each SkipList level, a thread flips a random coin to
decide how many nodes to skip ahead at that level. In essence, we
use local randomness and the random structure of the SkipList to
balance accesses to the head of the list. The lengths of jumps at
each level are chosen such that the probabilities of hitting nodes
among the first O(p log3 p) are close to uniform. (See Figure 1 for
the intuition behind sprays.)

While a DeleteMin in an exact priority queue returns the ele-
ment with the smallest key—practically one of the p smallest keys
if p threads are calling DeleteMin concurrently— the SprayList
ensures that the returned key is among the O(p log3 p) smallest
keys (for some linearization of operations), and that each operation
completes within log3 p steps, both with high probability. We also
provide anti-starvation guarantees, in particular, that elements with
small keys will not remain in the queue for too long. The formal
proof of these guarantees is our main technical contribution.

Specifically, our proofs are inspired by an elegant argument
proving that sprays are near-uniform on an ideal (uniformly-
spaced) SkipList, given in Section 3.2. However, this argument
breaks on a realistic SkipList, whose structure can be quite irreg-
ular. Precisely bounding the node hit distribution on a realistic
SkipList turns out to be significantly more involved.1 In particu-
lar, we prove that this distribution is close to uniform on the first
O(p log3 p) elements. We can then upper bound the probability
that two sprays collide, and the expected number of operation re-
tries. In turn, this upper bounds the running time of an operation
and the relative rank of returned keys.

The uniformity of the spray distribution also allows us to imple-
ment an optimization whereby large contiguous groups of claimed
nodes are physically removed by a randomly chosen cleaner thread.
The trade-off between relaxed semantics and thread contention
can be controlled via the Spray parameters (starting height, and
jump length). We also give a simple back-off scheme which allows
threads to “tighten” the semantics under low contention.

In sum, our analysis gives strong probabilistic guarantees on the
rank of a removed key, and on the running time of a Spray opera-
tion. Our algorithm is designed to be lock-free, but the same spray-
ing technique would work just as well for a lock-based SkipList.

A key question is whether a priority queue with such relaxed
guarantees can be useful in practice. We answer this question in
the affirmative, by examining the practical performance of the
SprayList through a wide series of benchmarks, including syn-
thetic high-contention tests, discrete-event simulation, and run-
ning single-source shortest paths on grid, road network, and social
graphs. We use the observation that, in these settings, it can be
beneficial to speculatively execute in perturbed order, incurring a
wasted work penalty if task dependencies are not met.

We compare our performance to that of the quiescently-consistent
priority queue of Lotan and Shavit [22], the state-of-the-art SkipList-
based priority queue implementation of Lindén and Jonsson [21]
and the recent k-priority queue of Wimmer et al. [29].2

Our first finding is that our data structure shows fully scalable
throughput for up to 80 concurrent threads under high-contention
workloads. We then focus on the trade-off between the strength
of the ordering semantics and performance. We show that, for
discrete-event simulation and a subset of graph workloads, the

1 We perform the analysis in a restricted asynchronous model, defined in
Section 3.1.
2 Due to the complexity of the framework of [29], we only provide a partial
comparison with our algorithm in terms of performance.

amount of additional work due to out-of-order execution is amply
compensated by the increase in scalability.
Related Work. The first concurrent SkipList was proposed by
Pugh [25], while Lotan and Shavit [22] were first to employ this
data structure as a concurrent priority queue. They also noticed that
the original implementation is not linearizable, and added a time-
stamping mechanism for linearizability. Herlihy and Shavit [17]
give a lock-free version of this algorithm.

Sundell and Tsigas [28] proposed a lock-free SkipList-based
implementation which ensures linearizability by preventing threads
from moving past a list element that has not been fully removed.
Instead, concurrent threads help with the cleanup process. Unfor-
tunately, all the above implementations suffer from very high con-
tention under a standard workload, since threads are still all contin-
uously competing for a handful of locations.

Recently, Lindén and Jonsson[21] presented an elegant design
with the aim of reducing the bottleneck of deleting the minimal ele-
ment. Their algorithm achieves a 30−80% improvement over pre-
vious SkipList-based proposals; however, due to high contention
compare-and-swap operations, its throughput does not scale past 8
concurrent threads. To the best of our knowledge, this is a limitation
of all known exact priority queue implementations.

Recent work by Mendes et al. [9] employed elimination tech-
niques, speculatively matching DeleteMin and Insert opera-
tions, to adapt to contention in an effort to extend scalability.
Still, their experiments do not show throughput scaling beyond
20 threads.

Another direction by Wimmer et al. [29] presents lock-free pri-
ority queues which allow the user to dynamically decrease the
strength of the ordering for improved performance. In essence, the
data structure is distributed over a set of places, which behave as
exact priority queues. Threads are free to perform operations on a
place as long as the ordering guarantees are not violated. Other-
wise, the thread merges the state of the place to a global task list,
ensuring that the relaxation semantics hold deterministically. The
paper provides analytical bounds on the work wasted by their al-
gorithm when executing a parallel instance of Dijkstra’s algorithm,
and benchmark the execution time and wasted work for running
parallel Dijkstra on a set of random graphs. Intuitively, the above
approach provides a tighter handle on the ordering semantics than
ours, at the cost of higher synchronization cost. The relative perfor-
mance of the two data structures will depend on the specific appli-
cation scenario and on the workload.

An interesting vein of research investigates parallel data struc-
tures with priority-queue semantics in the PRAM model, e.g. [8,
11, 19, 26]. We note that, as opposed to our design, many of these
proposals rely on the relative synchrony of threads to provide or-
dering semantics. Therefore, a precise comparison with this line of
work is beyond the scope of our paper.

Our work can be seen as part of a broader research direction
on high-throughput concurrent data structures with relaxed seman-
tics [16, 27]. Examples include container data structures which
(partially or entirely) forgo ordering semantics such as the ren-
dezvous mechanism [2] or the CAFE task pool [6]. Recently, Dice
et al. [12] considered randomized data structures for highly scalable
exact and approximate counting.

2. The SprayList Algorithm
In this section, we describe the SprayList algorithm. The Search
and Insert operations are identical to the standard implementa-
tions of lock-free SkipLists [15, 17], for which several freely avail-
able implementations exist, e.g. [10, 15]. In the following, we as-
sume the reader is familiar with the structure of a SkipList, and give
an overview of standard lock-free SkipList operations.
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Figure 1: The intuition behind the SprayList. Threads start at height
H and perform a random walk on nodes at the start of the list,

attempting to acquire the node they land on.
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Figure 2: A simple example of a spray, with no padding. Green nodes
are touched by the Spray, and the thread stops at the red node. Orange

nodes could have been chosen for jumps, but were not.

2.1 The Classic Lock-Free SkipList
Our presentation follows that of Fraser [15, 17], and we direct the
reader to these references for a detailed presentation.
General Structure. The data structure maintains an implementa-
tion of a set, defined by the bottom-level lock-free list. (Throughout
this paper we will use the convention that the lowest level of the
SkipList is level 0.) The SkipList is comprised of multiple levels,
each of which is a linked list. Every node is inserted determinis-
tically at the lowest level, and probabilistically at higher levels. It
is common for the probability that a given node is present at level
` to be 2−`. (Please see Figure 1 for an illustration.) A key idea
in this design is that a node can be independently inserted at each
level. A node is present if it has been inserted into the bottom list;
insertion at higher levels is useful to maintain logarithmic average
search time.
Pointer Marking. A critical issue when implementing lock-free
lists is that nodes might “vanish” (i.e., be removed concurrently)
while some thread is trying access them. Fraser and Harris [15]
solve this problem by reserving a marked bit in each pointer field
of the SkipList. A node with a marked bit is itself marked. The bit
is always checked and masked off before accessing the node.
Search. As in the sequential implementation, the SkipList search
procedure looks for a left and right node at each level in the list.
These nodes are adjacent om the list, with key values less-than and
greater-than-equal-to the search key, respectively.

The search loop skips over marked nodes, since they have been
logically removed from the list. The search procedure also helps
clean up marked nodes from the list: if the thread encounters a
sequence of marked nodes, these are removed by updating the
unmarked successor to point to the unmarked predecessor in the list
at this level. If the currently accessed node becomes marked during
the traversal, the entire search is re-started from the SkipList head.
The operation returns the node with the required key, if found at
some level of the list, as well as the list of successors of the node.
Delete. Deletion of a node with key k begins by first searching
for the node. If the node is found, then it is logically deleted by
updating its value field to NULL. The next stage is to mark each
link pointer in the node. This will prevent an new nodes from being
inserted after the deleted node. Finally, all references to the deleted
node are removed. Interestingly, Fraser showed that this can be
done by performing a search for the key: recall that the search
procedure swings list pointers over marked nodes.
Cleaners / Lotan-Shavit DeleteMin. In this context, the Lotan-
Shavit [22] DeleteMin operation traverses the bottom list attempt-
ing to acquire a node via a locking operation. Once acquired, the
node is logically deleted and then removed via a search operation.
We note that this is exactly the same procedure as the periodic
cleaner operations in our design.

Insert. A new node is created with a randomly chosen height. The
node’s pointers are unmarked, and the set of successors is set to
the successors returned by the search method on the node’s key.
Next, the node is inserted into the lists by linking it between the
successors and the predecessors obtained by searching. The updates
are performed using compare-and-swap. If a compare-and-swap
fails, the list must have changed, and the call is restarted. The insert
then progressively links the node up to higher levels. Once all levels
are linked, the method returns.

2.2 Spraying and Deletion
The goal of the Spray operation is to emulate a uniform choice
among theO(p log3 p) highest-priority items. To perform a Spray,
a process starts at the front of the SkipList, and at some initial
height h. (See Figure 2 for an illustration.)

At each horizontal level ` of the list, the process first jumps
forward for some small, randomly chosen number of steps j` ≥ 0.
After traversing those nodes, the process descends some number
of levels d`, then resumes the horizontal jumps. We iterate this
procedure until the process reaches a node at the bottom of the
SkipList.

Once on the bottom list, the process attempts to acquire the
current node. If the node is successfully acquired, the thread starts
the standard SkipList removal procedure, marking the node as
logically deleted. (As in the SkipList algorithm, logically deleted
nodes are ignored by future traversals.) Otherwise, if the process
fails to acquire the node, it either re-tries a Spray, or, with low
probability, becomes a cleaner thread, searching linearly through
the bottom list for an available node.

We note that, as with other SkipList based Priority Queue algo-
rithms, the runtime of a Spray operation is independent of the size
of the SkipList. This is because, with high probability, the Spray
operation only accesses pointers belonging to theO(p log3 p) items
at the head of the list.
Spray Parameters. An efficient Spray needs the right combina-
tion of parameters. In particular, notice that we can vary the start-
ing height, the distribution for jump lengths at each level, and how
many levels to descend between jumps. The constraints are poly-
logarithmic time for a Spray, and a roughly uniform distribution
over the head of the list. At the same time, we need to balance the
average length of a Spray with the expected number of thread col-
lisions on elements in the bottom list.

We now give an overview of the parameter choices for our
implementation. For simplicity, consider a SkipList on which no
removes have yet occurred due to Spray operations. We assume
that the data structure contains n elements, where n� p.



Starting Height. Each Spray starts at list level H = log p + K,
for some constantK.3 (Intuitively, starting the Spray from a height
less than log p leads to a high number of collisions, while starting
from a height of C log p for C > 1 leads to Sprays which traverse
beyond the first O(p log3 p) elements.)
Jump Length Distribution. We choose the maximum number
of forward steps L that a Spray may take at a level to be L =
M log3 p, whereM ≥ 1 is a constant. Thus, the number of forward
steps at level `, is uniformly distributed in the interval [0, L].

The intuitive reason for this choice is that a randomly built
SkipList is likely to have chains of log p consecutive elements of
height one, which can only be accessed through the bottom list. We
wish to be able to choose uniformly among such elements, and we
therefore need L to be at least log p. (While the same argument
does not apply at higher levels, our analysis shows that choosing
this jump length j` yields good uniformity properties.)
Levels to Descend. The final parameter is the choice of how
many levels to descend after a jump. A natural choice, used in
our implementation, is to descend one level at a time, i.e., perform
horizontal jumps at each SkipList level.

In the analysis, we consider a slightly more involved random
walk, which descendsD = max(1, blog log pc) consecutive levels
after a jump at level `. We must always traverse the bottom level of
the SkipList (or we will never hit SkipList nodes of height 1) so we
round H down to the nearest multiple of D. We note that we found
empirically that setting D = 1 yields similar performance.

In the following, we parametrize the implementation by H ,
L and D such that D evenly divides H . The pseudocode for
Spray(H,L,D) is given below.

x← head /* x = pointer to current location */

/* Assume D divides H */

`← H /* ` is the current level */

while ` ≥ 0 do
Choose j` ← Uniform[0, L] /* random jump */
Walk x forward j` steps on list at height `

/* traverse the list at this level */

`← `−D /* descend D levels */

Return x

Algorithm 1: Pseudocode for Spray(H,L,D). Recall that
the bottom level of the SkipList has height 0.

Node Removal. Once it has successfully acquired a node, the
thread proceeds to remove it as in a standard lock-free SkipList [15,
17]. More precisely, the node is logically deleted, and its references
are marked as invalid.

In a standard implementation, the final step would be to swing
the pointers from its predecessor nodes to its successors. However,
a spraying thread skips this step and returns the node. Instead, the
pointers will be corrected by cleaner threads: these are randomly
chosen DeleteMin operations which linearly traverse the bottom
of the list in order to find a free node, as described in Section 2.3.

2.3 Optimizations

Padding. A first practical observation is that, for small (constant)
values of D, the Spray procedure above is biased against elements
at the front of the list. For example, it would be extremely unlikely
for the first element in the list to be hit by a walk with D = 1. To
circumvent this bias, in such cases, we simply “pad” the SkipList:
we addK(p) dummy entries in the front of the SkipList. If a Spray
lands on one of the firstK(p) dummy entries, it restarts. We choose
K(p) such that the restart probability is low, while, at the same

3 Thoughout this paper, unless otherwise stated, we consider all logarithms
to be integer, and omit the floor b·c notation.

time, the probability that any given node in the interval [K(p) +
1, p log3 p] is hit is close to 1/p log3 p. We note that padding is not
necessary for higher values of D, e.g., D = Θ(log log p).
Cleaners. Before each new Spray, each thread flips a low-
probability coin to decide whether it will become a cleaner thread.
A cleaner thread simply traverses the bottom-level list of the
SkipList linearly (skipping the padding nodes), searching for a
key to acquire. In other words, a cleaner simply executes a lock-
free version of the Lotan-Shavit [22] DeleteMin operation. At the
same time, notice that cleaner threads adjust pointers for nodes pre-
viously acquired by other Spray operations, reducing contention
and wasted work. Interestingly, we notice that a cleaner thread
can swing pointers across a whole group of nodes that have been
marked as logically deleted, effectively batching this part of the
remove process.

The existence of cleaners is not needed in the analysis, but is
a useful optimization. In the implementation, the probability of an
operation becoming a cleaner is 1/p, i.e., roughly one in p Sprays
becomes a cleaner.
Adapting to Contention. We also note that the SprayList al-
lows threads to adjust the spray parameters based on the level of
contention. In particular, a thread can estimate p, increasing its es-
timate if it detects higher than expected contention (in the form of
collisions) and decreasing its estimate if it detects low contention.
Each thread parametrizes its Spray parameters the same way as in
the static case, but using its estimate of p rather than a known value.
Note that with this optimization enabled, if only a single thread ac-
cess the SprayList, it will always dequeue the element with the
smallest key.

3. Spray Analysis
In this section, we analyze the behavior of Spray operations. We
describe our analytical model in Section 3.1. We then give a first
motivating result in Section 3.2, bounding the probability that two
Spray operations collide for an ideal SkipList.

We state our main technical result, Theorem 3, and provide a
proof overview in Section 3.3. The full proof of Theorem 3 is
rather technical, and can be found in our technical report [5]. In
essence, given our model, our results show that SprayLists do not
return low priority elements except with extremely small probabil-
ity (Theorem 2) and that there is very low contention on individual
elements, which in turn implies the bound on the running time of
Spray (Corollary 1).

3.1 Analytical Model
As with other complex concurrent data structures, a complete anal-
ysis of spraying in a fully asynchronous setting is extremely chal-
lenging. Instead, we restrict our attention to showing that, un-
der reasonable assumptions, spraying approximates uniform choice
amongst roughly the first O(p log3 p) elements. We will then use
this fact to bound the contention between Spray operations. We
therefore assume that there are n � p log3 p elements in the
SkipList.

We consider a set of at most p concurrent, asynchronous pro-
cesses trying to perform DeleteMin operations, traversing a clean
SkipList, i.e. a SkipList whose height distribution is the same as
one that has just been built. In particular, a node has height ≥ i
with probability 1/2i, independent of all other nodes. They do so
by each performing Spray operations. When two or more Spray
operations end at the same node, all but one of them must retry. if
a Spray lands in the padded region of the SkipList, it must also
retry. We repeat this until all Sprays land at unique nodes (because
at most one thread can obtain a node). Our goal is to show that for
all p processors, this process will terminate in O(log3 p) time in
expectation. Note that since each Spray operation takes O(log3 p)



time, this is equivalent to saying that each process must restart their
Spray operations on average at most a constant number of times.

On the one hand, this setup is clearly only an approximation of
a real execution, since concurrent inserts and removes may occur in
the prefix and change the SkipList structure. Also, the structure of
the list may have been biased by previous Spray operations. (For
example, previous sprays might have been biased to land on nodes
of large height, and therefore such elements may be less probable
in a dynamic execution.)

On the other hand, we believe this to be a reasonable approxi-
mation for our purposes. We are interested mainly in spray distribu-
tion; concurrent deletions should not have a high impact, since, by
the structure of the algorithm, logically deleted nodes are skipped
by the spray. Also, in many scenarios, a majority of the concur-
rent inserts are performed towards the back of the list (correspond-
ing to elements of lower priority than those at the front). Finally,
the effect of the spray distribution on the height should be limited,
since removing an element uniformly at random from the list does
not change its expected structure, and we closely approximate uni-
form removal. Also, notice that cleaner threads (linearly traversing
the bottom list) periodically “refresh” the SkipList back to a clean
state.

3.2 Motivating Result: Analysis on a Perfect SkipList
In this section, we illustrate some of the main ideas behind our
runtime argument by first proving a simpler claim, Theorem 1,
which holds for an idealized SkipList. Basically, Theorem 1 says
that, on SkipList where nodes of the same height are evenly spaced,
the Spray procedure ensures low contention on individual list
nodes.

More precisely, we say a SkipList is perfect if the distance
between any two consecutive elements of height ≥ j is 2j , and the
first element has height 0. On a perfect SkipList, we do not have
to worry about probability concentration bounds when considering
SkipList structure, which simplifies the argument. (We shall take
these technicalities into account in the complete argument in the
next section.)

We consider the Spray(H,L,D) procedure with parameters
H = log p,L = log p, andD = 1, the same as our implementation
version. Practically, the walk starts at level log p−1 of the SkipList,
and, at each level, uniformly chooses a number of forward steps
between [1, log p] before descending. We prove the following upper
bound on the collision probability, assuming that log p is even:

Theorem 1. For any position x in a perfect SkipList, let Fp(x)
denote the probability that a Spray(log p, log p, 1) lands at x.
Then Fp(x) ≤ 1/p.

Proof. Fix in the following parametersH = log p, L = log p,D =
1 for the Spray, and consider an arbitrary such operation. Let ai
be the number of forward steps taken by the Spray at level i, for
all 0 ≤ i ≤ log p− 1.

We start from the observation that, on a perfect SkipList, the
operation lands at the element of index

∑log p−1
i=0 ai2

i in the bottom
list. Thus, for any element index x, to count the probability that
a Spray which lands at x, it suffices to compute the probability
that a (log p)-tuple (a0, . . . , alog p−1) whose elements are chosen
independently and uniformly from the interval {1, . . . , log p} has
the property that the jumps sum up to x, that is,

log p−1∑
i=0

ai2
i = x. (1)

For each i, let ai(j) denote the jth least significant bit of ai
in the binary expansion of ai, and let x(j) denote the jth least
significant bit of x in its binary expansion.

Choosing an arbitrary Spray is equivalent to choosing a random
(log p)-tuple (a1, . . . , alog p) as specified above. We wish to com-

pute the probability that the random tuple satisfies Equation 1. No-
tice that, for

∑log p−1
i=0 ai2

i = x, we must have that a0(1) = x(1),
since the other ai are all multiplied by some nontrivial power of 2
in the sum and thus their contribution to the ones digit (in binary)
of the sum is always 0. Similarly, since all the ai except a0 and a1

are bit-shifted left at least twice, this implies that if Equation 1 is
satisfied, then we must have a1(1) + a0(2) = x(2). In general, for
all 1 ≤ k ≤ log p − 1, we see that to satisfy Equation 1, we must
have that ak(1) + ak−1(2) + . . .+ a0(k) + c = x(k), where c is
a carry bit determined completely by the choice of a0, . . . , ak−1.

Consider the following random process: in the 0th round, gen-
erate a0 uniformly at random from the interval {1, . . . , log p}, and
test if a0(1) = x(1). If it satisfies this condition, continue and we
say it passes the first round, otherwise, we say we fail this round. It-
eratively, in the kth round, for all 1 ≤ k ≤ log p−1, randomly gen-
erate an ak uniformly from the interval {1, . . . , log p}, and check
that ak(1)+ak−1(2)+. . .+a0(k)+c = x(k) mod 2, where c is
the carry bit determined completely by the choice of a0, . . . , ak−1

as described above. If it passes this test, we continue and say that it
passes the kth round; otherwise, we fail this round. If we have yet to
fail after the (log p − 1)st round, then we output PASS, otherwise,
we output FAIL. By the argument above, the probability that we
output PASS with this process is an upper bound on the probability
that a Spray lands at x.
The probability we output PASS is then

Pr[pass 0th round]

log p−2∏
i=0

Pr[pass (i+ 1)th round|Ai]

where Ai is the event that we pass all rounds k ≤ i. Since a0 is
generated uniformly from the interval {1, 2, . . . , log p}, and since
log p is even by assumption, the probability that the least significant
bit of a0 is x(1) is exactly 1/2, so

Pr[pass 0th round] = 1/2. (2)

Moreover, for any 1 ≤ i ≤ log p − 2, notice that conditioned on
the choice of a1, . . . , ai, the probability that we pass the (i+ 1)th
round is exactly the probability that the least significant bit of ai+1

is equal to x(i+1)− (ai(2)+ . . .+a0(i+1)+c) mod 2, where
c is some carry bit as we described above which only depends
on a1, . . . , ai. But this is just some value v ∈ {0, 1} wholly
determined by the choice of a0, . . . , ai, and thus, conditioned on
any choice of a0, . . . , ai, the probability that we pass the (i+ 1)th
round is exactly 1/2 just as above. Since the condition that we pass
the kth round for all k ≤ i only depends on the choice ofa0, . . . , ai,
we conclude that

Pr[pass (i+ 1)th round|Ai] = 1/2. (3)

Therefore, we have Pr[output PASS] = (1/2)log p = 1/p, which
completes the proof.

3.3 Complete Runtime Analysis for DeleteMin
In this section, we show that, given a randomly chosen SkipList,
each DeleteMin operation completes in O(log3 p) steps, in ex-
pectation and with high probability. As mentioned previously, this
is equivalent to saying that the Spray operations for each process
restart at most a constant number of times, in expectation and with
high probability. The crux of this result (stated in Corollary 1) is
a characterization of the probability distribution induced by Spray
operations on an arbitrary SkipList, which we obtain in Theorem 3.

Our results require some mathematical preliminaries. For sim-
plicity of exposition, throughout this section and in the full analysis
(given in our technical report [5]) we assume p which is a power of
2. (If p is not a power of two we can instead run Spray with the p
set to the smallest power of two larger than the true p, and incur a
constant factor loss in the strength of our results.)



We consider Sprays with the parameters H = log p, L =
M log3 p, and D = max (1, blog log pc). Let `p be the num-
ber of levels at which jumps are performed; in particular `p =
blog p/blog log pcc − 1.

Since we only care about the relative ordering of the elements
in the SkipList with each other and not their real priorities, we will
call the element with the ith lowest priority in the SkipList the ith
element in the SkipList. We will also need the following definition.

Definition 1. Fix two positive functions f(p), g(p).

• We say that f and g are asymptotically equal, f ' g, if
limp→∞ f(p)/g(p) = 1.
• We say that f . g, or that g asymptotically bounds f , if there

exists a function h ' 1 so that f(p) ≤ h(p)g(p) for all p.

Note that saying that f ' g is stronger than saying that f =
Θ(g), as it insists that the constant that the big-Theta would hide is
in fact 1, i.e. that asymptotically, the two functions behave exactly
alike even up to constant factors.

There are two sources of randomness in the Spray algorithm
and thus in the statement of our theorem. First, there is the ran-
domness over the choice of the SkipList. Given the elements in
the SkipList, the randomness in the SkipList is over the heights of
the nodes in the SkipList. To model this rigorously, for any such
SkipList S, we identify it with the n-length vectors (h1, . . . , hn)
of natural numbers (recall there are n elements in the SkipList),
where hi denotes the height of the ith node in the SkipList. Given
this representation, the probability that S occurs is

∏n
i=1 2−(hi).

Second, there is the randomness of the Spray algorithm it-
self. Formally, we identify each Spray with the `p-length vector
(a0, . . . , a`p−1) where 1 ≤ ai ≤ M log3 p denotes how far we
walk at height iblog log pc, and a0 denotes how far we walk at the
bottom height. Our Spray algorithm uniformly chooses a combina-
tion from the space of all possible Sprays. For a fixed SkipList S,
and given a choice for the steps at each level in the Spray, we say
that the Spray returns element i if, after doing the walk prescribed
by the lengths chosen and the procedure described in Algorithm 1,
we end at element i. For a fixed SkipList S ∈ S and some element i
in the SkipList, we let Fp(i, S) denote the probability that a Spray
returns element i.

Definition 2. We say an event happens with high probability or
w.h.p. for short if it occurs with probability at least 1 − p−Ω(M),
where M is the constant defined in Algorithm 1.

With this definitions, our main theorems are the following.

Theorem 2. In the model described above, no Spray will return an
element beyond the first M(1 + 1

log p
)σ(p)p log3 p ' Mp log3 p,

with probability at least 1− p−Ω(M).

This theorem states simply that sprays do not go too far past the
first O(p log3 p) elements in the SkipList, which demonstrates that
our SprayList does return elements with relatively small priority.
The proof of Theorem 2 is fairly straightforward and uses standard
concentration bounds and is available in our technical report [5].
However, the tools we use there will be crucial to later proofs.
The other main technical contribution of this paper is the following
theorem.

Theorem 3. For p ≥ 2 and under the stated assumptions, there
exists an interval of elements I(p) = [a(p), b(p)] of length b(p)−
a(p) ' Mp log3 p and endpoint b(p) . Mp log3 p, such that for
all elements in the SkipList in the interval I(p), we have that

Fp(i, S) ' 1

Mp log3 p
,

w.h.p. over the choice of S.

In plain words, this theorem states that there exists a range of
elements I(p), whose length is asymptotically equal to Mp log3 p,
such that if you take a random SkipList, then with high probability
over the choice of that SkipList, the random process of performing
Spray approximates uniformly random selection of elements in the
range I(p), up to a factor of two. The condition b(p) .Mp log3 p
simply means that the right endpoint of the interval is not very
far to the right. In particular, if we pad the start of the SkipList
with K(p) = a(p) dummy elements, the Spray procedure will
approximate uniform selection from roughly the first Mp log3 p
elements, w.h.p. over the random choice of the SkipList. The proof
of Theorem 3 is fairly involved; we provide an overview here, and
the full argument is available in our technical report [5].
Proof Overview. First we prove that the fraction of Sprays
which hit any i ∈ I(p) is asymptotically bounded above by
1/(Mp log3 p), then we prove the other direction of the inequality,
which suffices to prove the theorem. The proof of the upper bound
proceeds, at a high level, as follows. First, for any i ∈ I(p), we
construct what we call “valid” intervals for every height, and argue
that unless the Spray is in these intervals at each level, it cannot
return i w.h.p. over the choice of the SkipList, since otherwise it
has already either undershot or overshot i. Thus it suffices to count
the number of Sprays which are in these valid intervals at each
step. By using concentration bounds we can argue that w.h.p., up to
a small multiplicative error which vanishes in the limit as p→∞,
the number of elements in the SkipList at any given height in any
given interval behaves exactly like its expectation. Thus, we can
count the number of Sprays which are in valid intervals at every
height, and we derive that this number of asymptotically bounded
by 1/(Mp log3 p).

The proof of the lower bound is in the same vein and makes
the additional observation that if these valid intervals we described
above are not too large and are close together, then every Spray
which is in a valid interval at any height has a good shot of being
valid at the next height, and any Spray which is in the bottommost
valid interval can reach i. This, when done carefully, yields that the
probability that a Spray stays valid and then hits i is lower bounded
by 1/(2Mp log3 p) asymptotically.
Runtime Bound. Given this theorem, we bound the probability of
collision for two Sprays, which in turn bounds the running time
for a DeleteMin operation, which yields the following Corollary.
Given Theorem 3, its proof is fairly straightforward, and can be
found in our technical report [5].

Corollary 1. In the model described above, DeleteMin takes
O(log3 p) time in expectation. Moreover, for any ε > 0, DeleteMin
will run in time O(log3 p log 1

ε
/ log log p) with probability at least

1− ε.

4. Implementation Results
Methodology. Experiments were performed on a Fujitsu RX600
S6 server with four Intel Xeon E7-4870 (Westmere EX) processors.
Each processor has 10 2.40 GHz cores, each of which multiplexes
two hardware threads, so in total our system supports 80 hardware
threads. Each core has private write-back L1 and L2 caches; an
inclusive L3 cache is shared by all cores.

We examine the performance of our algorithm on a suite of
benchmarks, designed to test its various features. Where applicable,
we compare several competing implementations, described below.
Lotan and Shavit Priority Queue. The SkipList based prior-
ity queue implementation of Lotan and Shavit on top of Keir
Fraser’s SkipList [15] which simply traverses the bottom level
of the SkipList and removes the first node which is not al-
ready logically deleted. The logical deletion is performed using
a Fetch-and-Increment operation on a ’deleted’ bit. Physical
deletion is performed immediately by the deleting thread. Note that



Figure 3: Priority Queue implementation performance on a 50% insert, 50% delete workload: throughput (operations completed), average CAS failures per
DeleteMin, and average L1 cache misses per operation.

Figure 4: The frequency distribution of Spray operations when each thread performs a single Spray on a clean SprayList over 1000 trials. Note that the
x-axis for the 64 thread distribution is twice as wide as for 32 threads.

this algorithm is not linearizable, but quiescently consistent. This
implementation uses much of the same code as the SprayList, but
does not provide state of the art optimizations.
Lindén and Jonsson Priority Queue. The priority queue imple-
mentation provided by Lindén et. al. is representative of state of
the art of linearizable priority queues [21]. This algorithm has been
shown to outperform other linearizable priority queue algorithms
under benchmarks similar to our own and is optimized to minimize
compare-and-swap (CAS) operations performed by DeleteMin.
Physical deletion is batched and performed by a deleting thread
when the number of logically deleted threads exceeds a threshold.
Fraser Random Remove. An implementation using Fraser’s
SkipList which, whenever DeleteMin would be called, instead
deletes a random element by finding and deleting the successor of
a random value. Physical deletion is performed immediately by the
deleting thread. Although this algorithm has no ordering semantics
whatsoever, we consider it to be the performance ideal in terms of
throughput scalability as it incurs almost no contention.

Wimmer et. al. k-Priority Queue. The relaxed k-Priority Queue
given by Wimmer et. al. [29]. This implementation provides a lin-
earizable priority queue, except that it is relaxed in that each thread
might skip up to k of the highest priority tasks; however, no task
will be skipped by every thread. We test the hybrid version of their
implementation as given in [29]. We note that this implementation
does not offer scalability past 8 threads (nor does it claim to). Due
to compatibility issues, we were unable to run this algorithm on
the same framework as the others (i.e. Synchrobench). Instead, we
show its performance on the original framework provided by the
authors. Naturally, we cannot make direct comparisons in this man-
ner, but the scalability trends are evident.
SprayList. The algorithm described in Section 2, which chooses
an element to delete by performing a Spray with height blog pc+
1, jump length uniformly distributed in [1, blog pc + 1] and
padding length p log p/2. Each thread becomes a cleaner (as de-
scribed in Section 2.3) instead of Spray with probability 1/p.
Note that in these experiments, p is known to threads. Through



testing, we found these parameters to yield good results com-
pared to other choices. Physical deletion is performed only by
cleaner threads. Our implementation is built on Keir Fraser’s
SkipList algorithm [15], using the benchmarking framework of
Synchrobench [10]. The code has been made publicly available [4].

4.1 Throughput
We measured throughput of each algorithm using a simple bench-
mark in which each thread alternates insertions and deletions,
thereby preserving the size of the underlying data structure. We
initialized each priority queue to contain 1 million elements, after
which we ran the experiment for 1 second.

Figure 3 shows the data collected from this experiment. At low
thread counts (≤ 8), the priority queue of Lindén et. al. outper-
forms the other algorithms by up to 50% due to its optimizations.
However, like Lotan and Shavit’s priority queue, Lindén’s priority
queue fails to scale beyond 8 threads due to increased contention
on the smallest element. In particular, the linearizable algorithms
perform well when all threads are present on the same socket, but
begin performing poorly as soon as a second socket is introduced
above 10 threads. On the other hand, the low contention random
remover performs poorly at low thread counts due to longer list
traversals and poor cache performance, but it scales almost linearly
up to 64 threads. Asymptotically, the SprayList algorithm per-
forms worse than the random remover by a constant factor due to
collisions, but still remains competitive.

To better understand these results, we measured the average
number of failed synchronization primitives per DeleteMin oper-
ation for each algorithm. Each implementation logically deletes a
node by applying a (CAS) operation to the deleted marker of a node
(though the actual implementations use Fetch-and-Increment
for performance reasons). Only the thread whose CAS successfully
sets the deleted marker may finish deleting the node and return it as
the minimum. Any other thread which attempts a CAS on that node
will count as a failed synchronization primitive. Note that threads
check if a node has already been logically deleted (i.e. the deleted
marker is not 0) before attempting a CAS.

The number of CAS failures incurred by each algorithm gives
insight into why the exact queues are not scalable. The lineariz-
able queue of Lindén et. al. induces a large number of failed op-
erations (up to 2.5 per DeleteMin) due to strict safety require-
ments. Similarly, the quiescently consistent priority queue of Lotan
and Shavit sees numerous CAS failures, particularly at higher thread
counts. We observe a dip in the number of CAS failures when ad-
ditional sockets are introduced (i.e. above 10 threads) which we
conjecture is due to the increased latency of communication, giv-
ing threads more time to successfully complete a CAS operation
before a competing thread is able to read the old value. In contrast,
the SprayList induces almost no CAS failures due to its collision
avoiding design. The maximum average number of failed primi-
tives incurred by the SprayList in our experiment was .0090 per
DeleteMin which occurred with 4 threads. Naturally, the random
remover experienced a negligible number of collisions due to its
lack of ordering semantics.

Due to technical constraints, we were unable to produce a
framework compatible with both the key-value-based implemen-
tations presented in Figure 3 and the task-based implementation of
Wimmer et. al. However, we emulated our throughput benchmark
within the framework of [29] by implementing taks whose only
functionality is to spawn a new task and re-add it to the system.

Figure 3 shows the total number of tasks processed by the k-
priority queue of Wimmer et. al.4 with k = 1024 over a 1 second
duration. Similarly to the priority queue of Lindén et. al., the k-
priority queue scales at low thread counts (again ≤ 8), but quickly

4 We used the hybrid k-priority queue which was shown to have the best
performance of the various implementations described [29].

drops off due to contention caused by synchronization needed to
maintain the k-linearizability guarantees. Other reasonable values
of k were also tested and showed identical results.

In sum, these results demonstrate that the relaxed semantics of
Spray achieve throughput scalability, in particular when compared
to techniques ensuring exact guarantees.

4.2 Spray Distribution
We ran a simple benchmark to demonstrate the distribution gener-
ated by the Spray algorithm. Each thread performs one DeleteMin
and reports the position of the element it found. (For simplicity,
we initialized the queue with keys 1, 2, . . . so that the position of
an element is equal to its key. Elements are not deleted from the
SprayList so multiple threads may find the same element within a
trial.) Figure 4 shows the distribution of elements found after 1000
trials of this experiment with 32 and 64 threads.

We make two key observations: 1) most Spray operations fall
within the first roughly 400 elements when p = 32 and 1000 ele-
ments when p = 64 and 2) the modal frequency occurred roughly
at index 200 for 32 threads and 500 for 64 threads. These statis-
tics demonstrate our analytic claims, i.e., that Spray operations hit
elements only near the front of the list. The width of the distri-
bution is only slightly superlinear, with reasonable constants. Fur-
thermore, with a modal frequency of under 100 over 1000 trials
(64000 separate Spray operations), we find that the probability of
hitting a specific element when p = 64 is empirically at most about
.0015, leading to few collisions, as evidenced by the low CAS fail-
ure count. These distributions suggest that Spray operations bal-
ance the trade-off between width (fewer collisions) and narrowness
(better ordering semantics).

4.3 Single-Source Shortest Paths
One important application of concurrent priority queues is for
use in Single Source Shortest Path (SSSP) algorithms. The SSSP
problem is specified by a (possibly weighted) graph with a given
“source” node. We are tasked with computing the shortest path
from the source node to every other node, and outputting those dis-
tances. One well known algorithm for sequential SSSP is Dijkstra’s
algorithm, which uses a priority queue to repeatedly find the node
which is closest to the source node out of all unprocessed nodes. A
natural parallelization of Dijkstra’s algorithm simply uses a parallel
priority queue and updates nodes concurrently, though some extra
care must be taken to ensure correctness.

Note that skiplist-based priority queues do not support the
DecreaseKey operation which is needed to implement Dijkstra’s
algorithm, so instead duplicate nodes are added to the priority
queue and stale nodes (identified by stale distance estimates) are
ignored when dequeued.

We ran the single-source shortest path algorithm on three types
of networks: an undirected grid (1000× 1000), the California road
network, and a social media network (from LiveJournal) [1]. Since
the data did not contain edge weights, we ran experiments with
unit weights (resembling breadth-first search) and uniform random
weights. Figure 5 shows the running time of the SSSP algorithms
with different thread counts and priority queue implementations.

We see that for many of the test cases, the SprayList sig-
nificantly outperforms competing implementations at high thread
counts. There are of course networks for which the penalty for re-
laxation is too high to be offset by the increased concurrency (e.g.
weighted social media) but this is to be expected. The LiveJournal
Weighted graph shows a surprisingly high spike for 60 cores us-
ing the SprayList which is an artifact of the parameter discretiza-
tion. In particular, because we use blog pc for the Spray height, the
Spray height for 60 cores rounds down to 5. The performance of
the SprayList improves significantly at 64 cores when the Spray
height increases to 6, noting that nothing about the machine archi-
tecture suggests a significant change from 60 to 64 cores.



Figure 5: Runtimes for SSSP using each PriorityQueue implementation on each network (lower is better).

4.4 Discrete Event Simulation
Another use case for concurrent priority queues is in the context of
Discrete Event Simulation (DES). In such applications, there are a
set of events to be processed which are represented as tasks in a
queue. Furthermore, there are dependencies between events, such
that some events cannot be processed before their dependencies.
Thus, the events are given priorities which respect the partial order
imposed by the dependency graph. As an example, consider n-body
simulation, in which events represent motions of each object at each
time step, each event depends on all events from the preceding time
step. Here, the priority of an event corresponds to its time step.

We emulate such a DES system with the following methodol-
ogy: we initially insert 1 million events (labelled by an ID) into the
queue, and generate a list of dependencies. The number of depen-
dencies for each event i, is geometrically distributed with mean δ.
Each event dependent on i is chosen uniformly from a range with
mean i + K and radius

√
K. This benchmark is a more complex

version of the DES-based benchmark of [21], which in turn is based
on the URDME stochastic simulation framework [13].

Once this initialization is complete, we perform the follow-
ing experiment for 500 milliseconds: Each thread deletes an item
from the queue and checks its dependants. For each dependant not
present in the queue, some other thread must have already pro-
cessed it. This phenomenon models an inversion in the event queue
wherein an event is processed with incomplete information, and
must be reprocessed. Thus, we add it back into the queue and we

call this wasted work. This can be caused by the relaxed semantics,
although we note that even linearizable queues may waste work if
a process stalls between claiming and processing an event.

This benchmark allows us to examine the trade-off between the
relaxed semantics and the increased concurrency of SprayLists.
Figure 6 reports the actual work performed by each algorithm,
where actual work is calculated by measuring the reduction in the
size of the list over the course of the experiment, as this value
represents the number of nodes which were deleted without being
reinserted later and can thus be considered fully processed. For
each trial, we set δ = 2 and tested K = 100, 1000, 10000.

As expected, the linearizable priority queue implementation
does not scale for any value ofK. As in the throughput experiment,
this experiment presents high levels of contention, so implementa-
tions without scaling throughput cannot hope to scale here despite
little wasted work. The SprayList also fails to scale for small val-
ues of K. For K = 100, there is almost no scaling due to large
amounts of wasted work generated by the relaxation. However, as
K increases, we start to see more scalability, with K = 1000 scal-
ing up to 16 threads and K = 10000 scaling up to 80 threads.

To quantify the scalability relative to the distribution of depen-
dencies, for each thread count, we increased K until performance
plateaued and recorded the value of K at which the plateau be-
gan. Figure 7 reports the results of this experiment. Note that the
minimum K required increases near linearly with the number of
threads.



Figure 6: Work performed for varying dependencies (higher is better). The
mean number of dependants is 2 and the mean distance between an item

and its dependants varies between 100, 1000, 10000.

Figure 7: Minimum value of K which maximizes the performance of the
SprayList for each fixed number of threads.

5. Discussion and Future Work
We presented a relaxed priority queue which allows throughput
scaling for large number of threads. The implementation weakens
the strict ordering guarantees of the sequential specification, instead
providing probabilistic guarantees on running time and inversions.

Our evaluation suggests that the main advantage of our scheme
is the drastic reduction in contention, and that, in some workloads,
the gain in scalability can fully compensate for the additional work
due to inversions. Furthermore, the relaxation parameters of our
algorithm can be tuned depending on the workload.

An immediate direction for future work would be to adapt the
spraying technique to obtain relaxed versions of other data struc-
tures, such as approximate stacks or double-ended queues [17].
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