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1 Introduction

As an introduction we give a short review on the min-heap. A min-heap is a tree-based data struc-
ture that stores values in a certain way so that the heap satisfies the heap property. Regarding a
min-heap, the heap property says that if v is a parent of u, then the v’s key value is either smaller
or equal to the key value of u. There is no rule for the children of a node regarding left or right
ordering - that means that the key of the left child does not have to be smaller than the key of the
right child as this is the case in a binary search tree.

The heap is an efficient implementation of a priority queue in which elements are partially ordered
based on their priority value. A binary heap has a depth of O(log(n)).

Supported heap operations are:
1. findMin - O(1)
2. deleteMin - O(log(n))
3. insert - O(log(n))
4. decreaseKey - O(log(n)) (decreases the key of an item)
5. merge - O(log(n)) (merging two binomial heaps of size m,n where m < n)

A soft heap is a simple variant of a priority queue that supports similar functions as a regular min-
heap. After deleting the minimum in a regular heap, one has to move up another item to the root
which takes O(logn) time. The goal is to speed up this operation. Therefore, we allow the data
structure to increase the values of certain keys, such items are called corrupted. The findMin opera-
tion returns the current minimum key, which might or might not be corrupted. The benefit is speed:
during heap updates, items travel together in packets in a form of ” car pooling”, in order to save time.

Theorem 1 Beginning with no prior data, consider a mixed sequence of operations that includes
n inserts. For any 0 < e < 1/2, a soft heap with error rate € supports each operation in constant
amortized time, except for insert, which takes O(log1l/e) time. The data structure never contains
more than en corrupted items at any given time. In a comparison-based model, these bounds are
optimal.



Note that this does not mean that only en items are corrupted throughout the entire sequence of
operations. This is simply an upper bound for the number of items in the soft heap being corrupted
at any given time.

The main reason for the invention of soft heaps was to find a faster algorithm for finding mini-
mal spanning trees. The algorithm that could be built using soft heaps was the fastest at the time.
Given a connected graph with n vertices and m weighted edges, the algorithm finds a minimum
spanning tree in time O(ma(m,n)), where « is the classical functional inverse of Ackermann’s func-
tion. [1]

Furthermore, soft heaps are also useful for near sorting, and generally for situations where ap-
proximate position (in a sequence) information is sought.

Theorem 2: For any 0 < € < 1/2, we can use a soft heap to near-sort n numbers in time
O(nlogl/e): this means that the position of any number in the output sequence differs from its
true position by at most en.

Proof of Theorem 2: We only give a short description of the proof. We assume that n is
large enough so that 1/e lies between a large constant and y/n. The idea is to insert n items into a
soft heap and then deleting them again until the heap is empty. Then, one can divide the output
sequence into distinct intervals in O(n) time - these intervals are sorted with respect to each other
i.e. all items in interval ¢ are smaller than all items in interval ¢ + 1. We show that there can be at
most Gen items in each interval. Thus, any number can be output in a position at most Gen off its
rank. By replacing € by €/6 we get the upper bound that was claimed in the theorem. Therefore, we
have costs of O(nlog1/e) for the heap operations + O(n) for the postprocessing time which results
in a total time of O(nlog1/e).

2 The Data Structure

The soft heap can be seen as a modified binomial heap which is in turn a list of modified binomial
trees.

A binomial tree can be defined recusively:
e A binomial tree of rank 0 is a single node.

e A binomial tree of rank k can be formed by the combination of two binomial trees of rank
k — 1 where one root becomes the child of the other root. An alternative for the second part
of the definition could also be: A binomial tree of rank k has a root node whose children are
roots of binomial trees of ranks k—1, k—2, ..., 2, 1, 0 (in this order), as illustrated in figure 1.

In order to understand how the data structure is constructed, it is important to understand the
concept of binomial heaps. An important property of a binomial tree is that a tree of rank & consists
of 2% nodes and that the root has k children (deg(root) = k). Furthermore, all the trees in the
heap must have distinct ranks. Binomial trees that are defined in this way have the special property
that we can easily combine two binomial trees of the same rank (this will be discussed in the next
chapter). If we want to store n items in a binomial heap, we need one binomial tree for n = 1 and at
most [log,(n)] binomial trees for n > 1, where the binary representation of n indicates the existence
of the binomial trees of certain ranks.
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Figure 1: Binomial trees of different ranks [4]

Example

Suppose n = 12 = [log,(12)] = 4, therefore, we can conclude that we need at most 4 binomial trees.
As 1219 = 1100, we see that we need a tree of rank 3 and a tree of rank 2 if we enumerate the bits
from right to left starting at 0.

Soft Heap: The binomial trees of the soft heap are called soft queues which are slightly modi-
fied binomial trees. Initially, a soft queue corresponds to a regular binomial tree which is used as an
underlying master-tree. The difference is, that a soft queue allows that nodes are deleted without
changing the rank of the parent node - in other words a soft queue may have missing subtrees that
are contained in the master-tree. The rank of a node v always corresponds to the number of children
in the master-tree. The reason behind this correspondence between a soft queue and its master-tree
will be explained in detail when we look at the sift operation. The rank of a queue ¢’ corresponds
to the rank of its root. Furthermore we use the following rank invariant: the number of children of
the root should be no smaller than |rank(root)/2]. This invariant will be useful for the analysis later.

Corruption

Another modification is the following: in a regular heap, every node stores one item with respect to
its appropriate priority value. Soft heaps allow us to increase the value of certain keys. In that way,
soft heaps can store an entire item_list of items per node that are associated with the same priority
value. Some of these items might have had another key - their values have been raised. The value
with respect to which we order the soft queue is called ckey.

Initially, every item’s ckey matches its key. We will later introduce an operation that allows us to
combine the different item lists of the nodes. All items in one item_list are associated with the same
ckey that denotes the priority value. During heap updates, we move entire item lists accross the
heap in order to save time. All items in one list are treated equally in terms of priority. We enforce
that ckey(v) is an upper bound of all items in items_list(v). An item z in an items_list(v) with
key(z) < ckey(v) counts as corrupted as its ckey is raised. Corruption cannot be reversed.
Furthermore, we introduce an error rate 0 < ¢ < % In a soft heap storing n items, at most en items
have their keys raised and thus count as corrupted. Additionally, we add the constraint that all
corrupted items must be stored at nodes of rank greater than r = r(e).



As the number of children of a node varies in a binomial tree depending on the node’s rank, it is
convenient to use a binary tree where each node v stores two pointers to its children (v — child
and v — next) in order to implement a binomial tree. We enforce the following next-invariant: we
always store the child with the smaller ckey as v — next. We define the following rule: A binomial
tree of rank k will be modelled as a binary tree of height k + 1 with 2* leaves. In this way, all
the nodes of the binomial tree end up in the leaves of the binary tree. The benefit of representing
binomial heaps in this way, is that the internal nodes of the binary tree represent the melding of two
binomial trees of the same rank and have the same ckey as their smaller child. Figure 2 shows how
to represent a binomial tree as a binary tree.
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Figure 2: Conversion of a binomial tree into a binary tree
Furthermore, we store a pointer to the root of minimum ckey among all queues.
Summary
Summarizing the explanation above: A soft heap is a list of soft queues. The goal of data structure is
to be faster than a regular heap. We therefore allow the soft heap to increase keys and thus corrupt
items. These corrupted items are stored in item lists at nodes v with rank(v) > r. If an item x is
stored in an item list of a node v that is associated with a ckey(v) > key(z), z counts as corrupted.
3 The Heap Operations
We limit ourselves to the essential operations.

Insert

When inserting a new item into the soft heap, we build a new queue consisting of a single node
v and meld it into the heap. The initial item list of v solely contains key(v) = ckey(v). As v has no
children, the rank of the queue is 0.

Melding two heaps
When melding two soft heaps S; and Ss, we consider the heap that consists of fewer queues e.g. S;.

We meld every queue g of Sy into S3. As previously mentioned, a soft heap cannot contain more
than one soft queue of rank k. Therefore, in order to meld a queue ¢ of S; with rank k into S, we



go through the ordered list of queues in Se until we find the first queue ¢’ with rank(q’) >= k.
1. If rank(q’) > k, then we simply insert ¢ into the list of queues in S right before ¢.

2. If rank(q’) = k = rank(q) we have a conflict as the different queues are supposed to have
distinct ranks. We make use of the property that two binomial trees of rank k£ can easily be
combined to a new binomial tree of rank k 4+ 1 by simply attaching the root with the larger
ckey as a new child of the other root. This is shown in figure 3.
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Figure 3: Two binomial trees of rank 2 combined to a new one

In the second case, the combination of both trees results in a tree of rank k + 1. We revert to the
analogy of binary representation of the heaps. If Sy already contains a queue of rank k + 1, we have
to repeat the operation and meld the new queue into the heap So, similar to a carry propagation in
binary addition.

If there is no queue ¢’ in Sy with rank(q’) >= rank(q), we simply insert ¢ at the end of the list of
queues in Ss.

After melding two heaps, one has to make sure that min_pointer still points to the root with
the smallest ckey.

DeleteMin

In order to delete the min, we look at the root v of the queue to which min_pointer is pointing
to.

o If items_list(v) contains only one key x, we simply return = and delete it from the list.
e If items_list(v) contains more than one key, we return the first key in the list and delete it.

In both cases, the key that is returned might be corrupted. It might occur that the root’s item list
is empty. In this case, we have to refill it by pushing items from nodes further down in the tree up
towards the root. We do this by using the sift operation, which is the key operation of the soft heap.



Sift

Instead of only storing one item at each node, the soft heap corrupts some values and stores them
in the item lists of nodes of rank greater than r. In that way, we do not have to bring up a new item
to the root every single time after deleting the minimum. We only have to move items up the tree
towards the root when the item list of the root is empty. The pseudocode for the sift operation is at
the end of this sub-chapter and can be used as a reference. It makes sense to show how the algorithm
works using binary trees instead of binomial trees as it is nearer to the actual implementation. As
mentioned before, in the binary tree representation, all the nodes from a binomial tree are stored in
the leaves.

Explanation:

The goal of the operation is to move items up the tree towards the root. The basic idea is to start
at the root of the binary tree and recursively go down to a leaf and collect the items of the lower
nodes on the way back up. If the nodes on the recursion path fulfill certain conditions, we recursively
perform the operation again so that the recursion tree is branching and we move up even more items.
First we empty the items_list(v) as it will be refilled by new items from further down the tree. Then
we check if the node we are currently looking at is a leaf - if this is the case, we set its ckey(v) to
00, indicating that we visited this leaf. Nodes whose ckeys are set to co will be deleted during the
clean-up procedure as they are not needed anymore. The leaf’s initial ckey is not lost when we set
it to oo - its initial value is stored in its parent node.

If the node we are looking at is not a leaf, we call sift recursively on the child with the smaller ckey
which is v — next. After sift(v — next), v — next might have a new ckey value so we might
have to swap the children because of the next-invariant. An example for such a swap can be seen in
figure 4 where the two subtrees of the root need to be swapped. After that, items_list(v) is set to
items_list(v — next) and ckey(v) is replaced by ckey(v — next). Figure 4 illustrates the deletion
of the last element in the item list followed by a sift operation going from the root down to the leaf
and back up: the crossed out values are being replaced by the values right next to it. Horizontal
arrows indicate that the subtrees have to be exchanged.
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Figure 4: Single sift operation



After replacing the item list of the current node, we check if the loop-condition holds. The loop-
condition consists of two terms:

i sift has only been called recursively once (max. binary branching of recursion tree at every
node)

ii the rank of v exceeds the threshold r and either is odd or it exceeds the rank of the highest-
ranked child of v by at least two.

The first part (i) makes sure that the recursion tree is branching at most one time at this level. As
mentioned in the introduction to the data structure, we enforce that corrupted items can only be
stored at nodes with rank greater than r. This is checked by the first part of ii). The second part
of ii) makes sure that the recursion tree branches the right amount time. If both conditions are
fulfilled, we again call sift(v — next) - that means that we again want to start moving items up
the tree towards the root starting at that node. The eventual item list of v will consist of its current
item list appended to the newly computed item list of v — next. Again, ckey(v) is replaced by
ckey(v — next). In this case all the items z in items_list(v) with key(x) < ckey(v) are corrupted
as their key has been raised. After the second call of sift, we might again have to swap the children
so that the next-invariant is not violated.

In the end we get rid of the nodes v with ckey(v) = oo i.e. the nodes that are not needed anymore
as their initial keys have been moved further up in the tree.

Recall that each queue has an underlying master-tree. The leaves that we are deleting from the soft
queue in this clean-up process will not be deleted in the master-tree. Thus, the ranks of the nodes
are not changed during this process. Our goal is to ensure that the ranks of both children of a node
in the binary tree are equal. Enforcing this might cause a discrepancy between the rank (number of
children in the master-tree) and the actual number of children (in the binomial tree). Nevertheless,
this allows us to easily swap the children in the binary tree. Recall that an inner node in the binary
tree represents the melding of two binomial trees of the same rank. Thus, swapping the children
in the binary tree is equivalent to combining the two binomial trees the opposite way (exchanging
which root is the child of the other root) which is in turn possible because of the nice property of
binomial trees.

If both children of a node v are not used anymore, we just delete both and v becomes a leaf. If only
one child is not used anymore, we restore the pointers in a way that every node in the binary tree
still has two children that represent binomial trees of the same rank. Technically speaking: If both,
ckey(v — child) and ckey(v — next) are oo, then we delete both and v becomes a leaf. If only
ckey(v — child) is oo, we set v — child = v — next — child and v — next = v — next — next.
As the rank of a node is defined with respect to the master-tree, a node of rank k£ can now have
two children of rank & — 2 which is one of the conditions checked in the loop-condition. In this way,
both children of a node in the binary (!) tree will always have the same rank. Figure 5 illustrates
the clean-up process if only one child is leaf.
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Figure 5: Clean-up operation

sift(v)

item_list(v) < T < 0

if v has no child then
set ckey(v) to oo and return;

end if

1. sift(v — next);

if ckey(v — next > ckey(v — child)) then
exchange v — next and v — child

end if

T < T Uitem_list(v — next)

if loop-condition holds then
goto 1

end if

item list(v) + T;

clean-up =0

DeleteMin II

In the previous explanation, we skipped an important part of the operation. If the list is empty, we
first have to check, whether the rank invariant holds that was mentioned in the introductory section
to the data structure (the number of children of the root should not be less than |rank(root)/2]),
before refilling the list using sift. Previous sifting may have caused the loss of too many children of
the root and hence a violation of the invariant. In this case, we dismantle the queue and re-meld its
children into the heap.



4 Complexity
4.1 The Error Rate

We claimed that at most en items were corrupted in the soft heap. Note that this does not mean that
only en items are corrupted in total during all operations. en only limits the amount of corrupted
items that are contained in the heap at a certain point in time. In order to prove our claim, we need
two lemmata and one helper lemma. To achieve the desired error rate, we set

def.

r' =24 2[log1/¢€]

Lemma 4.1
litem _list(v)| < max{1,2[rank@)/21=r/2}

Proof: Recall that the item lists can only be enlarged during a sift call. Therefore, we again favor
the binary tree representation over the binomial tree representation. If the recursion tree of sift is
only a path, meaning that sift is only called recursively once (no branching of recursion tree), the
item list of a node simply moves up to a node of higher rank and the lemma holds by induction. For
the case that the loop condition is fulfilled and sift is called twice, items_list(v) will be composed of
the concatenation of the two item lists associated with v — next after each call of sift(v). As the
second part of the loop condition contains a disjunction, we have to do a case distinction. In both
cases, let k be v — rank and let k' be v — next — rank. We know that k > r:

i First, we look at the case where k is odd: we know that k¥’ < k and assume that rank(v —
next) > r. By induction, either of the two computed item lists of v — next will have the size
of at most 2[(rank(v)=1)/21=r/2 — ofrank(v)/2]1=1=1/2 which is true for an odd k.

ii Next, we look at the case where k > k' + 1 > r + 2. Either of the two computed lists of
v — next will have the size of at most 2[(rank(v)=2)/2]1=r/2 — glrank(v)/21-1-r/2 which is true
for every k.

As items_list(v) will be the concatenation of both refilled lists, its size will be at most 2-27@7k(v)/21-1-1/2
2 [rank(v)/2] 77"/2.‘]
Lemma 4.2 The soft heap contains at most n/2"~3 corrupted items at any given time.

In order to prove this lemma, we first prove another lemma that helps us with the actual proof.

Lemma 4.3 If S is the node set of a binomial tree then
Z 2rank(v)/2 < 4‘S|
veS
Proof of Lemma 4.3: Lemma 4.3 follows from the inequality
Z 2rank(v)/2 < 2k+2 _3. 2k/2 < 4|S‘7
veS

where k is the rank of the binomial tree.

We prove our claim by induction over k:
Base case (k= 0): As k = 0, there is only one node in the tree = 2° =1 <22 -3.20 =1



Step case (k — k+1): We know that a tree of rank k + 1 consists of two subtrees of rank k. Let’s
denote the set of nodes of the tree of rank k + 1 as S’.

Z grank(v)/2 _ o Z 2rank(v)/21§'2(2k+2 3. R/2)  ghtB 3 gk/2H1 < o(kH1)H2 _ 3 o(k+1)/2
veS’ veS

Proof of Lemma 4.2: We look at the nodes whose ranks are greater than r. Let’s denote the set
of nodes of rank greater that r in the respective master-tree ¢’ as R’. Within a binomial tree, the
set of nodes with a rank greater than r number a fraction of 1/2" of all the leaves. Recall that the
number of leaves in a binomial tree of rank k is 27!, resulting in 2¥~"~! nodes of rank greater than
r. Summing over all master-trees ¢/, we get

Y IR <n/2
q/

as an upper bound. At this point we have everything that we need for our proof: we can use Lemma
4.1 that says something about the length of the item list, we have a statement regarding the node
set of a binomial tree and a statement on the set of nodes of rank greater than r. The goal is to
combine all of them.

Using Lemma 4.1, we can show that Vv € R’ items_list(v) < 2[(renk()+1-1)/2] " Summing over all
master-trees and all nodes in R’ we get

Z Z 2(rank(v)+l—r)/2 — QZ Z 2(7"ank(v)—r—1)/2

q" veER' q’ vER'

The first sum represents the sum of the lengths of all item lists from nodes in R’. This represents
the number of items that are potentially corrupted based on the fact that the number of corrupted
items is bounded by the sum of items being stored in the item lists of nodes with rank larger than
r. As mentioned above, there are 2*~"~1 nodes of greater rank than r in every ¢’. These nodes
build a binomial tree of rank & — r — 1 themselves. Now we can apply Lemma 4.2 and Lemma
4.3 and conclude that 23,37 g(rank(v)=r=1)/2 < 2. 4|R'| = §|R’'| and therefore > 8IR| =
Zq, 22 |R| <23 /2" =n/2" 3.0

4.2 The Running Time

DeleteMin has trivially a constant running time. We only need to look at sift and meld.

4.2.1 Meld

Imagine that all n nodes from both heaps together were inserted into a new one and that n = 2%
for k € N. This scenario would be the worst case in terms of melds / combinations. Every one-node
queue has cost 1 and gets a credit in case of a carry operation. First of all, all one-node heaps will
be combined into heaps of rank 1 which releases one credit to pay for the work. Then all heaps are
combined to heaps of rank 2, again releasing one credit to pay for the work. We keep combining
the trees until we have one big binomial tree. In this example, we represent the binomial heap as
a binary tree. A leaf denotes a one-item queue, whereas an internal node indicates the melding of
two heaps. We know that we can build one single binomial tree with n = 2* nodes. Still using the
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binary tree representation, in order to get from one layer to the next layer, always two queues of the
same rank are combined and release one credit. There are 2¥ leaves of costs 1 and we have costs of
2#=1 in order to get to the layer above etc. (costs are always halved). If we keep going up to the
root and sum up all the costs, we get

k
D ookt =2M 1 =2n—1¢€O(n).
=0

In the case that the rank invariant is violated and we have to dismantle the root, we can use
the fact that the root v has lost more than [rank(v)/2] children. This means that one child of rank
at least rank(v)/2 must be missing. This missing subtree has at least 2[7¢"¥(*)/21=1 Jeaves that are
missing in the queue and make up for the costs of re-melding the other children of v.

4.2.2 Sift

The earliest stage where the recursion tree of sift can start branching is at a node of rank r + 1.
Along such a path of length at least r + 1, the recursion tree branches at least once. We show that
the depth of the recursion tree is in O(r). We assume that n is large enough so that 1/e lies between
a large constant ¢ and y/n. Let’s assume that c is in Q(n'/*). We know that the entire tree has a
depth that is logarithmic in n and that » € O(log 1/¢). By comparing the lower bound of r with the
height of the entire tree, we see that the recursion path is in O(r) as 1O§i Ly = %lﬁfgnn
If the recursion tree is branching, we always merge two item-lists. There can at most be n—1 merges
of item lists in a soft heap storing n items. Therefore, we conclude that sift has a running time of
O(rn). By setting r = 2+ [log(1/¢)] we get O(nlog1/e).

The costs of updating the min_pointer that points to the queue with the minimum ckey are covered
either by the costs of the sift operation or are made up for by the missing leaves as mentioned above.
This will not be elaborated further in this report.

Proof of Theorem 1: We proved the running time in the section above. By lemma 4.2, the
number of corrupted items is bounded by n/2"~3. We choose r(e) = 2 + 2[log1/¢] which proves
the upper bound for the number of corrupted items. Using a standard counting argument, one can
show that the claimed bounds are optimal in a comparison-based model.

5 Conclusion

The paper from Kaplan and Zwick [3] was a good introduction into the topic as Chazelle’s paper
was not completely clear from the beginning.

Finally, there was no clear explanation, why the amortized time of insert is O(log 1/¢). As proven in
4.2 the meld operation has costs of O(n) and the sift operation has costs of O(nlog1/¢). Therefore,
it seems unclear, why the insert operation has amortized costs of O(log1/¢€) as the insert operation
can only cause a further meld operation and no sift operation.
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